SuperWIMP Dark Matter

Jonathan Feng
UC Irvine

FNAL Theoretical Astrophysics Seminar
17 May 2004
Dark Matter

• Tremendous recent progress

• $\Omega_M = 0.27 \pm 0.04$
 $\Omega_\Lambda = 0.73 \pm 0.04$
 $[\Omega_B = 0.044 \pm 0.004]$

• 3 measurements agree; 2 must be wrong to change these conclusions

• On the other hand…
We live in interesting times: we know how much there is, but we have no idea what it is.

Precise, unambiguous evidence for new particle physics.
Dark Matter Candidates

- The Wild, Wild West of particle physics: axions, warm gravitinos, neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, self-interacting particles, self-annihilating particles, fuzzy dark matter, superWIMPs...

- Masses and interaction cross sections span many orders of magnitude

- Consider neutralinos: a favorite because they have at least three virtues...
I. Well-motivated Stable Particle

Goldberg (1983)
Ellis et al. (1983)

- Required by supersymmetry, and so motivated by
 - electroweak symmetry breaking
 - force unification
 - heavy top quark
 ...

- Stable
 - χ is typically the lightest supersymmetric particle (LSP), and so stable (in R-parity conserving supergravity)
II. Natural Relic Density

1) Initially, neutralinos χ are in thermal equilibrium:

$$\chi \chi \leftrightarrow \bar{f} f$$

2) Universe cools:

$$N = N_{EQ} \sim e^{-m/T}$$

3) χ's “freeze out”:

$$N \sim \text{constant}$$

Freeze out determined by annihilation cross section: for neutralinos, $\Omega_{DM} \sim 0.1$; natural – no new scales!
III. Detection Promising

Correct relic density \rightarrow efficient annihilation then \rightarrow efficient annihilation now, efficient scattering now

No-Lose Theorem
Illustration: mSUGRA

- Well-motivated stable particle: χ LSP in unshaded region
- Natural relic density: $\Omega_\chi = 0.23 \pm 0.04$ in red region
- Detection promising: below contours

<table>
<thead>
<tr>
<th>Observable</th>
<th>Type</th>
<th>Sensitivity</th>
<th>Experiment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^\pm \chi^0$</td>
<td>Collider</td>
<td>See Ref. [5]</td>
<td>Taeatron, CDF, D0</td>
</tr>
<tr>
<td>$B \to X,\gamma$</td>
<td>Low energy</td>
<td>$</td>
<td>\Delta B(B \to X,\gamma)</td>
</tr>
<tr>
<td>Muon MDM</td>
<td>Low energy</td>
<td>$</td>
<td>a_{\mu}^{\text{SM}} - a_\mu^\chi</td>
</tr>
<tr>
<td>σ_{DD}</td>
<td>Direct DM</td>
<td>$\sim 10^{-8}$ pb (See Ref [5])</td>
<td>CDMS, CRESST, GENIUS</td>
</tr>
<tr>
<td>ν from Earth</td>
<td>Indirect DM</td>
<td>$\phi_\nu < 100$ km$^{-2}$ yr$^{-1}$</td>
<td>Amanda, Nestor, Aantes</td>
</tr>
<tr>
<td>ν from Sun</td>
<td>Indirect DM</td>
<td>$\phi_\nu < 100$ km$^{-2}$ yr$^{-1}$</td>
<td>Amanda, Nestor, Aantes</td>
</tr>
<tr>
<td>γ (gal center)</td>
<td>Indirect DM</td>
<td>$\phi_\gamma(1) < 1.5 \times 10^{-10}$ cm$^{-2}$ s$^{-1}$</td>
<td>GLAST</td>
</tr>
<tr>
<td>γ (gal center)</td>
<td>Indirect DM</td>
<td>$\phi_\gamma(500) < 7 \times 10^{-12}$ cm$^{-2}$ s$^{-1}$</td>
<td>MAGIC</td>
</tr>
<tr>
<td>e^+ cosmic rays</td>
<td>Indirect DM</td>
<td>$S/B_{\text{ano}} < 0.01$</td>
<td>AMS-02</td>
</tr>
</tbody>
</table>
SuperWIMPs: The Basic Idea

• Supergravity requires gravitinos:
 mass $\sim M_W$, couplings $\sim M_W/M_*$

• \tilde{G} not LSP

 ![Diagram]

 SM \rightarrow LSP \rightarrow \tilde{G}

• No impact – assumption of most of literature

• \tilde{G} LSP

 ![Diagram]

 SM \rightarrow NLSP \rightarrow \tilde{G}

• Qualitatively different cosmology
• Assume gravitino is LSP. Early universe behaves as usual, WIMP freezes out with desired thermal relic density.

\tilde{G}

Gravitinos are dark matter now. They are superWIMPs – superweakly-interacting massive particles.
SuperWIMP Virtues

I. Well-motivated stable particle?
 Yes – SuperWIMPs exist in same frameworks as WIMPs
 Supersymmetry $\chi \rightarrow \tilde{G}$
 Universal extra dimensions $B^1 \rightarrow G^1$
 Appelquist, Cheng, Dobrescu (2001)

II. Natural relic density?
 Yes – Inherited from WIMP freeze out, no new scales

III. Detection Promising?
 No – Impossible to detect by conventional DM searches
 (No-Lose Theorem loophole)
 Yes – Qualitatively new signals
History

- Gravitinos are the original SUSY dark matter

 Pagels, Primack (1982)
 Weinberg (1982)
 Krauss (1983)
 Nanopoulos, Olive, Srednicki (1983)

 Moroi, Murayama, Yamaguchi (1993)
 Bolz, Buchmuller, Plumacher (1998)

Old ideas:

- Gravitinos have thermal relic density

 \[\Omega_{\tilde{G}} < 1 \Rightarrow m_{\tilde{G}} < 1 \text{ keV} \]

- DM if bound saturated, requires new scale

- Weak scale gravitinos diluted by inflation, regenerated in reheating

 \[T_{RH} < 10^{10} \text{ GeV} \]

- DM if bound saturated, requires new scale
SuperWIMP Signals

• SuperWIMP couplings are suppressed by M_W/M_*, no signals in direct or indirect DM searches

• But this same suppression means that the decays
 \[\tilde{\tau} \rightarrow \tilde{G} \tau, \quad \tilde{B} \rightarrow \tilde{G} \gamma \]
 are very late with possibly observable consequences

• Signals depend on
 – The NLSP
 – Two free parameters: $m_\tilde{G}$, $\Delta m = m_{\text{NLSP}} - m_\tilde{G}$
Decays to SuperWIMPs

- **Lifetime**

\[
\Gamma(\ell \rightarrow \ell \tilde{G}) = \frac{1}{48\pi M^2} \frac{m^5}{m_G^2} \left[1 - \frac{m_G^2}{m^2}\right]^4
\]

\[
\Gamma(\tilde{B} \rightarrow \gamma \tilde{G}) = \frac{\cos^2 \theta_W m_B^5}{48\pi M^2 m_G^2} \left[1 - \frac{m_G^2}{m^2}\right]^3 \left[1 + 3 \frac{m_G^2}{m_B^2}\right]
\]

In the limit \(\Delta m \ll m_G \),

\[
\tau(\ell \rightarrow \ell \tilde{G}) \approx 3.6 \times 10^8 \; s \left[\frac{100 \; \text{GeV}}{\Delta m} \right]^4 \frac{m_G}{1 \; \text{TeV}}
\]

\[
\tau(\tilde{B} \rightarrow \gamma \tilde{G}) \approx 2.3 \times 10^7 \; s \left[\frac{100 \; \text{GeV}}{\Delta m} \right]^3
\]

- **Energy release**

\[
\zeta_i = \epsilon_i B_i Y_{NLSP}
\]

\(i = \text{EM, had} \)

\(\epsilon_i = \text{energy released in each decay} \)

\(B_i = \text{branching fraction} \)

\(Y_{NLSP} = n_{NLSP} / n_{BG} \)

\(\Omega_{\tilde{G}} = \Omega_{DM} \Rightarrow (m_{\tilde{G}}, \Delta m) \leftrightarrow (\tau, \zeta_i) \)
Big Bang Nucleosynthesis

- Late decays occur after BBN and before CMB. This has consequences for light element abundances.

\[\eta_D = \eta_{\text{CMB}} \]

\[^7\text{Li} \text{ low} \]

Fields, Sarkar, PDG (2002)

BBN EM Constraints

- NLSP = WIMP \rightarrow Energy release is dominantly EM

- EM energy quickly thermalized, so BBN constrains (τ, ζ_{EM})

- BBN constraints weak for early decays: hard γ, e^- thermalized in hot universe

- Best fit reduces 7Li: 😁

Cyburt, Ellis, Fields, Olive (2002)
BBN EM Predictions

• Consider $\tilde{\tau} \rightarrow \tilde{G} \tau$ (others similar)

• Grid: Predictions for
 $m_{\tilde{G}} = 100$ GeV – 3 TeV (top to bottom)
 $\Delta m = 600$ GeV – 100 GeV (left to right)

• Some parameter space excluded, but much survives

• In fact, superWIMP DM naturally explains 7Li!

Feng, Rajaraman, Takayama (2003)
Given $\eta_D = \eta_{CMB}$, 7Li is underabundant by factor of 3-4.

Observations:

- 7Li/H = $1.5^{+0.9}_{-0.5} \times 10^{-10}$ (95% CL) [27]
- 7Li/H = $1.72^{+0.28}_{-0.22} \times 10^{-10}$ (1σ + sys) [28]
- 7Li/H = $1.23^{+0.68}_{-0.32} \times 10^{-10}$ (stat + sys, 95% CL) [29]

Possible explanations:
- Destruction in stellar cores (but no scatter?)
- Nuclear systematics (not likely)
- New physics
BBN Hadronic Constraints

• BBN constraints on *hadronic* energy release are severe for early decay times

 Kawasaki, Kohri, Moroi (2004)

• Cannot neglect subleading hadronic decays:

$$\tilde{l} \rightarrow l Z \tilde{G}, \nu W \tilde{G}$$

$$\tilde{\nu} \rightarrow \nu Z \tilde{G}, l W \tilde{G}$$

• In fact, for neutralinos, these aren’t even subleading:

$$\chi \rightarrow Z \tilde{G}, h \tilde{G}$$

This effectively eliminates \tilde{B} NLSP (photino still ok)
BBN Hadronic Predictions

Feng, Takayama, Su (2004)

Strong constraints on early decays
Entropy Production

- η_D and η_{CMB} measure same thing, but at different times

 Kaplinghat, Turner (2001)

- $\eta_D = \eta_{CMB}$ constrains entropy production:

 $\frac{\eta_f}{\eta_i} = \frac{S_i}{S_f}$

 $\frac{S_f}{S_i} = \exp \left[\zeta(3) \frac{45^{3/4}}{\pi^{11/4}} \frac{(g_*^T)^{1/4}}{g_{i,s}^i} \frac{\varepsilon_{EM} n_{WIMP}^i}{n_\gamma^i} \sqrt{\frac{\tau}{M_{Pl}}} \right]$

- BBN constraints \rightarrow entropy constraint satisfied

Feng, Rajaraman, Takayama (2003)
Cosmic Microwave Background

- Late decays may also distort the CMB spectrum
- For $10^5 \, \text{s} < \tau < 10^7 \, \text{s}$, get "$\mu$ distortions":
 \[
 \frac{1}{e^{E/(kT)+\mu} - 1}
 \]
 $\mu=0$: Planckian spectrum
 $\mu\neq0$: Bose-Einstein spectrum
 Hu, Silk (1993)

- Current bound: $|\mu| < 9 \times 10^{-5}$
- Future (DIMES): $|\mu| \sim 2 \times 10^{-6}$

Feng, Rajaraman, Takayama (2003)
SuperWIMPs in Extra Dimensions

- Universal Extra Dimensions: all fields propagate in TeV$^{-1}$ size extra dimensions
 Appelquist, Cheng, Dobrescu (2000)

- SUSY \rightarrow UED:
 Superpartners \rightarrow KK partners
 R-parity \rightarrow KK-parity
 LSP \rightarrow LKP
 \tilde{B} dark matter \rightarrow B^1 dark matter

- B^1 thermal relic density
 Servant, Tait (2002)

- B^1 direct and indirect detection
 Bertone, Servant, Sigl (2002)
 ...
SuperWIMPs in Extra Dimensions

- SuperWIMP: $\tilde{G} \rightarrow G^1$

- $O(1)$ modifications, except: tower of KK gravitons \rightarrow reheating is extremely efficient

- $T_{RH} < 1 - 10$ TeV
 (Cf. SUSY $T_{RH} < 10^{10}$ GeV)

SuperWIMP scenario requires $T_{RH} > 40$ GeV

Feng, Rajaraman, Takayama (2003)
Implications for Particle Physics

- We’ve been missing half of parameter space. For example, mSUGRA should have 6 parameters:
 \[
 \{ m_0, M_{1/2}, A_0, \tan\beta, \text{sgn}(\mu), m_{3/2} \}
 \]

\(\tilde{\chi}\) not LSP
\(\Omega_{\text{LSP}} > 0.23\) excluded
\(\tilde{\tau}\) LSP excluded

\(\tilde{\chi}\) LSP ok

\(\tilde{\gamma}\) LSP ok

\(\tilde{\gamma}\) not LSP
\(\Omega_{\text{LSP}} > 0.23\) excluded
\(\tilde{\tau}\) LSP excluded

\(\tilde{\chi}\) NLSP excluded

\(\tilde{\gamma}\) NLSP excluded

\(\tilde{\gamma}\) LSP
\(\Omega_{\text{NLSP}} > 0.23\) ok
\(\tilde{\tau}\) LSP ok
Implications for SUSY Spectrum

• What are the allowed superpartner masses in the super-WIMP scenario?
 It depends...constraints bound $n_{\tilde{G}} = \Omega_{\tilde{G}} / m_{\tilde{G}}$

• If $\Omega_{\tilde{G}} = \Omega_{DM}$, $n_{\tilde{G}} \sim m^{-1}_{\tilde{G}}$, low masses excluded

• If $\Omega_{\tilde{G}} = (m_{\tilde{G}} / m_{NLSP}) \Omega_{NLSP}^{th}$, $n_{\tilde{G}} \sim m_{\tilde{G}}$, high masses excluded
\[\Omega_{\tilde{G}} = \Omega_{DM} \]

Shaded regions excluded

Feng, Takayama, Su (2004)
\[\Omega_{\tilde{G}} = \left(\frac{m_{\tilde{G}}}{m_{NLSP}} \right) \Omega_{NLSP}^{th} \]

Shaded regions excluded

Feng, Takayama, Su (2004)
Implications for Colliders

- Each SUSY event produces 2 metastable sleptons
 Signature: highly-ionizing charged tracks

- Current bound (LEP): $m_{\tilde{\nu}} > 99$ GeV

- Tevatron Run II reach: ~ 150 GeV

- LHC reach: ~ 700 GeV in 1 year
Implications for Colliders

- May even be able to trap sleptons, move to a quiet environment to observe decays

- At LHC, \(\sim 10^6\) sleptons possible, can catch \(\sim 100\) in 100 m\(^3\) we

- At LC, can tune beam energy to produce slow sleptons
Implications for Colliders

• Recall:

\[\Gamma (\ell \rightarrow \ell \tilde{G}) = \frac{1}{48\pi M_*^2 m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\ell}^2} \right]^4 \]

• Measurement of \(\Gamma \rightarrow m_{\tilde{G}} \)
 \(\rightarrow \Omega_{\tilde{G}} \). SuperWIMP contribution to dark matter
 \(\rightarrow F \). Supersymmetry breaking scale, vacuum energy
 \(\rightarrow \) BBN in the lab

• Measurement of \(\Gamma \) and \(E_\ell \rightarrow m_{\tilde{G}} \) and Planck mass \(M_* \)
 \(\rightarrow \) Precise test of supergravity: gravitino is graviton partner
 \(\rightarrow \) Measurement of \(G_{\text{Newton}} \) on fundamental particle scale
 \(\rightarrow \) Probes gravitational interaction in particle experiment
Related Recent Work

• Analysis in particular models
 – mSUGRA (Ellis, Olive, Santoso, Spanos, hep-ph/0312062)

• Astrophysics
 – Structure formation (Sigurdson, Kamionkowski, astro-ph/0311486)

• Collider physics
Summary

SuperWIMPs – a new class of particle dark matter

<table>
<thead>
<tr>
<th></th>
<th>WIMPs</th>
<th>superWIMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-motivated stable particle?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural relic density?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Detection promising?</td>
<td>Yes</td>
<td>Yes (already seen?)</td>
</tr>
<tr>
<td>Years studied</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>