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THE MULTI-MESSENGER ERA

* Astronomy

~1000 years ago: optical photons
~100 years ago: multi-wavelength photons

~10 years ago: neutrinos (IceCube),
gravitational waves (LIGO)

Multi-messenger astronomy provides new
probes of outer space

« Collider Physics

~70 years ago: photons, charged particles
12 years ago: Higgs bosons (ATLAS/CMS)
1 year ago: neutrinos (FASER)

Multi-messenger collider physics provides
new probes of inner space

« Many areas of overlap between IceCube
and FASER: neutrinos, but also searches
for dark matter, other new particles
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PhYSICS ABOUT BROWSE PRESS COLLECTIONS

VIEWPOINT

The Beginning of Extra-Galactic Neutrino
Astronomy

Eli Waxman
Particle Physics & Astrophysics Department, Weizmann Institute of Science, Israel

September 2, 2014 « Physics 7, 88

What can high-energy neutrinos tell us about astrophysical objects beyond our galaxy?
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VIEWPOINT

The Dawn of Collider Neutrino Physics

Elizabeth Worcester
Brookhaven National Laboratory, Upton, New York, US
July 19, 2023 « Physics 16,113

The first observation of neutrines produced at a particle collider opens a new field of study and offers ways to
test the limits of the standard model.
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THE DAWN OF COLLIDER NEUTRINO PHYSICS

FASER

“Tabletop,” 18 months,
~$1M

153 neutrinos, 16c discovery

All previous
collider detectors
WIS pyilding-size, decades,
~$1B
In retrospect, collider neutrinos were
discovered “easily.” Lots of room for progress 0 neutrinos
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FORWARD PHYSICS

« In 2017, we realized that the large LHC detectors, while optimally
configured to discover new heavy patrticles, are also optimally configured
to miss new light particles.

Feng, Galon, Kling, Trojanowski (2017)

« Heavy particles (W, Z, t, h, ...) are produced at low velocity and decay
roughly isotropically to other particles.

« But high-energy light particles are dominantly produced in the forward
direction and escape through the blind spots of these large detectors.
— This is true for all known light particles: pions, kaons, D mesons, all neutrinos.

— Itis also true for many proposed particles, especially light, weakly-interacting

ones motivated by neutrino mass and dark matter. De Ruiula, Ruckl (1984)

« These blind spots are the Achilles heels of the large LHC detectors.
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DETECTING FORWARD PARTICLES

« To capture the enormous forward flux, we need to detect particles that
are produced in the forward direction along the beamline.

* Problem: we can't just put the detector there: they will block the
protons from coming in.

« Solution: the LHC is a circular collider! If we go far enough away, the
LHC proton beam will curve away, while all the light, weakly-
Interacting particles we are looking for will go straight.
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MAP OF THE LHC
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THE FORWARD REGION
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HOW BIG DOES THE DETECTOR HAVE TO BE?

« Consider light, weakly-interacting particles produced in pion decay. E.g.,
— SM: muon neutrinos produced in % — Hv,

— BSM: dark photons produced in % — yA’

 Momentum: 250 MeV
—
1 TeV

Space: 12 cm
480 m

|

« The opening angle is 0.2 mrad (the moon is 7
mrad). Even 480 m away, most of the signal
passes through an 8.5” x 11” sheet of paper.

« Neutrinos and light new particles are
therefore extremely collimated, motivating a
relatively small, fast, and inexpensive
experiment at the LHC: the ForwArd Search
ExpeRiment (FASER).
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FASER COLLABORATION

108 collaborators, 27 institutions, 11 countries
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COLLIDER NEUTRINO SEARCH

* Neutrinos produced at the ATLAS IP travel 480 m and pass through
FASERv. Occasionally, they can interact through v, N — uX, producing a
high-energy muon, which travels through the rest of the detector.

FASERv

Yy scintillator IFT Veto scintillator Timing scintillator Tracking Spectrometer stations Pre-shower
L tati station station scintillator station
7 station
v, | Ny - P .. e
-~ S e l s I -
FIASLos I e - _ _ I

. Calorimeter
FASERv tungsten/emulsion detector [ i Magnets & decay volume

FASER Collaboration (2303.14185, PRL)

- The signal is no charged particle passing through the upstream veto
scintillators, hits in the downstream scintillators, and a single charged
track, >100 GeV, in the central region of downstream trackers.

- Leading backgrounds from neutral hadrons produced in the rock, muons
that enter from the side, or beam 1 background contribute < 1 event.

- Expect 151 + 41 events from simulations, with the large uncertainty
arising from the poorly understood flux of forward hadrons.
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https://arxiv.org/abs/2303.14185

COLLIDER NEUTRINO RESULTS

 After unblinding, we found
153 signal events.

« 1st direct detection of
collider neutrinos.
— Signal significance of ~160
— Muon charge > vand v
— These include the highest
energy v and v interactions

ever observed from a
human source

* Following the FASER
observation, SND@LHC, a
complementary experiment
in the “other” forward
direction, discovered an
additional 8 neutrinos.

26 Sep 2024
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https://arxiv.org/abs/2303.14185

NEUTRINOS FROM EMULSION IN FASERv

The discovery analysis did not even use the emulsion detector! With the
emulsion, we have now observed the first collider electron neutrinos, including
~~the “Pika-v” event, the highest energy (1.5 TeV) electron neutrino from a lab
' source.
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https://arxiv.org/abs/2403.12520

TEV NEUTRINO CROSS SECTIONS

» Following these discoveries, we can then move on to studies, including
the first measurement of neutrino cross sections at TeV energies.

* Results are consistent with SM DIS predictions.
Xie, Gao, Hobbs, Stump, Yuan (2024)
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FASER Collaboration (2403.12520)

« These measurements use only 1.7% of the data collected in 2022 and
2023.
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NEW PARTICLE SEARCHES

 FASER is also sensitive to an entire zoo of light, weakly-interacting new

particles. For example:

— Dark photons produced through 7/n — A’y or pp - ppA’,then decay A’ —» e*e".
— ALPs coupled to Ws, produced through B - K a, then decay a — yy.
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 FASER started probing new parameter space after 1 day of LHC running.
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https://arxiv.org/abs/2308.05587
https://cds.cern.ch/record/2892328/files/CERN-FASER-CONF-2024-001.pdf

WHAT’S NEXT

FASER is running now, will collect data through the rest of 2024 and
2025 (and 2026, if LS3 is delayed), for a total of ~300 fb.
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FASER is approved for LHC Run 4, when High-Luminosity LHC running

Shutdown/Technical stop
Protons physics

Ions (tbc after LS4)
Commissioning with beam
Hardware commissioning

will add ~700 fb-1, with various detector upgrades in the works.

For the rest of the HL-LHC era, the proposed Forward Physics Facility,
will enable the LHC to fully realize the potential of forward physics.

26 Sep 2024
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https://cds.cern.ch/record/2851822

THE FACILITY

* Acylindrical cavern
surrounding the LOS,
620-695 m west of the
ATLAS IP.

« 75 mlong, 12 min
diameter, covers n > 5.1.

* Preliminary (Class 4) cost Bud, Magazinik, P4l, Osborne, et al. CERN CE (2024)

estimate: 35 MCHF.
Proposed Civil Engineering Schedule

« Can be constructed
independently of the LHC,
does not disrupt LHC
running.

 Timeline: construct in
LS3/early Run 4, physics
starts in late Run 4/Runb5. T

jﬁ( Design must be frozen before technical design can begin
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FPF EXPERIMENTS

« At present there are 4 experiments being designed for the FPF
— FASERZ2: magnetized spectrometer for BSM searches
— FASERv2: emulsion-based neutrino detector
— FLArE: LArTPC neutrino detector
— FORMOSA: scintillator array for BSM searches (successor to MilliQan)

« These represent a huge jump relative to the existing experiments:

— 10,000 times greater (decay volume * luminosity) for BSM searches, unique
discovery potential in many models of dark matter and new particles.

26 Sep 2024 Feng 21



IMPLICATIONS FOR ASTROPARTICLE PHYSICS

« Current and future LHC neutrino detectors will detect many neutrinos,
determine their flavor, and distinguish nu from anti-nu (at least for mu and tau)

* Current LHC neutrino detectors: ~10,000 TeV neutrinos
Future LHC neutrino detectors: ~1,000,000 TeV neutrinos (~1,000 per day!)

Detector Number of CC Interactions
Name Mass Coverage |Luminosity Vet Ve vty VUrtUr

FASERv | lton | 7285 150 fb—1 |[ 901 / 3.4k | 4.7k / 7.1k | 15/ 97
SNDQ@LHC | 800kg | 7<n <85 | 150 fb~! | 137 /395 | 790 / 1.0k | 7.6 / 18.6

FASERv2 [20 tons| 7 2>8.5 3ab~! [[178k / 668k [943k / 1.4M | 2.3k / 20k
FLArE |[10tons| 7 2>7.5 3ab~! || 36k / 113k | 203k / 268k | 1.5k / 4k

Kling, Nevay (2021); FASER Collaboration (2024)

« What can we do with these?

« Many interesting probes of neutrino properties, QCD, and complementarities
with lceCube and other astroparticle experiments.

FPF WG4 conveners: Luis Anchordoqui, Dennis Soldin
Other FPF workshop participants: Halzen, Engel, Pierog, Fedynitch, Sarkar, Lu, ...
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PRODUCTION, PROPAGATION, INTERACTION

« The large statistics will allow for double differential event rates as a function
energy and pseudorapidity for each neutrino flavor.

of

« These differential distributions probe a vast number of interconnected topics.

s N[
( Gluon PDF at x=107 ) ( Prompt Neutrino Fluxas) ( Intrinsic Charm ) Neutrino Scattering @ FPF

( Non-linear QCD ) (Fcc-nn Xsecs ) ( Charm pmducﬂnn) ( Forward MCs ) ( Large-x antiquarks ) ( Nuclear PDFs )

, D meson - (" Breaking QCD/BSM degeneracies @ HL-LHC )
Ve X

o v ( Event generators @ neutrino astrophysics )

proton-proton
scattering @ LHC

P

Neutrino Production @ ATLAS

Rojo (2024) )
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NEUTRINO PROPERTIES

Assuming known forward hadron production, the large event rates will enable
precise measurements of neutrino interaction cross section at TeV energies

between fixed target experiments and IceCube.

« Can confirm neutrino deep-inelastic scattering or test non-standard neutrino
iInteractions, enable precision tau neutrino studies.
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NEUTRINOS AS TRACERS OF HADRON PRODUCTION

« Alternatively, assuming
neutrino DIS, event rates
probe neutrino fluxes, that
is, forward hadron
production.

* Pions produce v,, kaons
produce v, and v,, charm
mesons produce v, v, and
v, with distinct energy and
pseudorapidity distributions.

* There are currently
significant differences in
forward hadron production
models, which can be
greatly constrained by data
from forward experiments.

26 Sep 2024
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LIGHT FLAVORS AND COSMIC MUON PUZZLE

Soldin (2108.08341), Albrecht et al. (2022)

« Observations of extensive air showers see a significant excess of muons
compared to hadronic interaction models.

« A proposed resolution is enhanced strangeness: pions replaced by kaons.

* Akaon/pion enhancement would be reflected as an enhanced v,/v, ratio, which
would be very obvious in the v, spectrum.

26 Sep 2024
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CHARM AND PROMPT ATMOSPHERIC NEUTRINOS

« Prompt atmospheric neutrino production is a 1073 ] .
difficult background to extragalactic astrophysical » == e
. . . . . E-|0—7_= —— spl with cutoff + ¥’ BL Lac - O
neutrinos at IceCube, with similar zenith angle 2 G oo EEmE = ©
distribution (isotropic) N S
' oo 1L g
T T g
« gg — ccis perturbative, but a leading uncertainty : T o,
. . 1079 = S S, — =~
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SUMMARY

« The forward region, previously thought of as uninteresting, is in fact
a treasure trove of interesting physics.

« Collider neutrinos at TeV energies, with implications for neutrino
properties, QCD, and astroparticle physics.

« Unique searches for new light, weakly-interacting particles and
other BSM patrticles, including many motivated by dark matter.

« Particularly interesting interplay with astroparticle physics, will shed
light on forward hadron interaction models, the cosmic muon puzzle,
prompt atmospheric neutrinos, ...

« FASER and SND@LHC are currently operating, with many more
results to come. The proposed Forward Physics Facility will be able
to fully realize the LHC's forward physics potential in the HL-LHC
era from 2028-2042.
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