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SUMMARY

* New physics searches at the LHC focus on high p;. This is
appropriate for heavy, strongly coupled particles
— o~fbtopb > N~ 103 - 10, produced isotropically

« However, if new particles are light and weakly coupled, this
may be completely misguided. Instead should exploit
— Oje~ 100 mb > N~ 10", 6 ~ Agep / E ~ 250 MeV / TeV ~ mrad

 We propose a small, inexpensive experiment, FASER, to be
placed in the very forward region of ATLAS/CMS, ~150-400
m downstream of the IP, and analyze its discovery potential
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OUTLINE

* Very Forward Region Infrastructure

* New Physics Example: Dark Photons
« Signal

« Backgrounds

* Results

« Summary and Outlook
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VERY FORWARD REGION INFRASTRUCTURE

« LHC ring consists of 8 straight 545 m intersections and 8
curved arcs. The infrastructure common to IP1 and IP4 (also
have ALFA, CASTOR, LHCf, TOTEM, etc.):

TAS: front quadrupole D1: dipole magnet, splits TAN: neutral target
absorbers (6 > 0.85 mrad) beams, deflects y, p, ... absorbers (n, v)
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Note the extreme difference in longitudinal and transverse scales
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ON-AXIS LOCATIONS

« We want to place FASER along the beam collision axis
- Far location: 400 m from IP, after beams curve, 2.6 m from the beams
- Near location: 150 m, after TAN, between the beams
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 ATLAS/CMS beams cross at 285 urad in vertical/horizontal
plane - shifts far (near) location by 5.7 (2.1) cm

 HL-LHC: 285->590 urad, TAN->TAXN moves forward 10 m,...
We assume current parameters, FASER is exactly on-axis
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DARK PHOTONS

« Dark matter is our most solid evidence for new particles.
In recent years, the idea of dark matter has been
generalized to dark sectors

« Dark sectors motivate light, weakly coupled particles
(WIMPless miracle, SIMP miracle, small-scale structure, ..)

A prominent example: dark photons

. ny o
by Fidden

« The resulting theory contains a new gauge boson A’ with
mass m, and eQ; couplings to SM fermions f
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DARK PHOTON PROPERTIES

 Produced in meson decays

2 3
B(r" — Aly) = 2¢° (1 — Z?l) B(1" — )

7{'0

and also through dark bremsstrahlung pp 2 p A" X and
direct QCD processes qq =2 A X (requires pdfs at low Q?, x)

» Travels long distances through matter without interacting,
decay mainly to e*e” (and u*u formy >2m )

cZ—cl Ba =~ (80 m) B 107" [ Ba E > >
— T Yarar X o - ToV A’ m A e

* The essential tension: low ¢ = low event rate, high ¢ =2
decays too fast. Is there a happy middle ground?
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DARK PHOTON STATUS

e Lots of unconstrained
parameter space with

m, > 10 MeV
e ~10°-103

 We will present results
for 2 representative
model points: (my, €)
(20 MeV, 104)
(100 MeV, 10°)
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PION PRODUCTION AT THE LHC

« Forward particle
production simulations
and models have been
greatly informed by LHC
data

« EPOS-LHC, SIBYLL 2.3,
QGSJETII-04 agree very
well

« Enormous event rates
(Oinel~70 mb, NineI
production is peaked at
Pt ~ Aqcp » but with
significant width
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DARK PHOTON PRODUCTION

« Consider iV decay, n) decay, dark bremsstrahlung

* Results for 1st representative model point:
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« Nothing surprising: in i® > A’ y, relative to pion distributions,

rates suppressed by €2, energies reduced by factor of ~2
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DARK PHOTONS IN THE FAR DETECTOR

* Now require dark photons to
decay in the far detector:
consider cylindrical detector

with volume ~1 m?
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* Only the highest energy A's survive, but there are still many
of them, and they are highly collimated
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SIGNAL DEPENDENCE ON DETECTOR SPECS

* Moving the detector
closer helps
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At the far location, R = 20 cm
captures almost all the A
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DARK PHOTONS IN THE NEAR DETECTOR

 Now require dark

photons to decay in the
near detector: detector
volume only ~0.1 m?2 !
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* Moving the detector closer - more dark photons decay in

the detector, even though the after-TAN location is crowded
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BACKGROUNDS

The signal is two simultaneous, opposite-sign, highly-energetic
(E > 500 GeV) charged particles that start in the detector at a
vertex and point back to IP = a tracker-based technology

The opening angle is 6, ~ m,/ E ~ 10 urad. After traveling ~ 1
m, this leads to 10 um separation, too small to resolve - a
small magnetic field

2 2
B
hB%—ech:Z%mm llTeV][ : ] [ ]

) ) 10 m 0.1 T

Many backgrounds are eliminated simply by virtue of FASER’s
location. Cosmic ray background is negligible, charged
particles from IP are bent away by D1 magnet

Leading backgrounds are neutrino-induced and beam-induced
backgrounds
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NEUTRINO-INDUCED BACKGROUNDS

« If ™ - uv before D1 magnet, resulting neutrinos can
propagate into FASER, interact through

vy N — (X VN — uF T X

« Second process eliminated by requiring no other activity, tracks
start in the detector and have high and symmetric energies

1
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* v 2 Kg, 2 2 charged tracks also negligible with same cuts
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BEAM-INDUCED BACKGROUNDS: FAR LOCATION

* Particles from IP must pass through ~ 50 m of matter.
Hadrons, electrons are stopped, only muons are relevant

e Muon background from 2011 ATLAS study can be used to

determine muon background at far location. Requiring E, >
100 GeV, the flux is

® ~ 1073 Hz cm™?

 The muon arrival times correspond to bunch crossings.
Accounting for the bunch structure and assuming a timing
resolution of 100 (10) ps, get ~0.1 (~0.01) coincident u*u-
pairs in 1 LHC year

* Far location appears to be background-free
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BEAM-INDUCED BACKGROUNDS: NEAR LOCATION

« Far more challenging environment

* Dedicated simulation using MARS/FLUKA/etc. should be
used, but we can use published results to get an estimate
Mokhov, Rakhno, Kerby, Strait (2003)

« Hadrons and electrons absorbed in the TAN

« Coincident muon background ~108 per LHC year. Can be

greatly suppressed by requiring tracks to start in the
detector and reconstruct a vertex, and requiring high and

symmetric energies

» Electron signal is clean if electrons can be distinguished
from muons
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RESULTS: EVENT RATES

« Up to 10% dark photons arrive in FASER in 300 fb! in
currently unconstrained regions of dark photon parameter
space

pp — A/X, A’ travels ~ (9(100) m, A — e+e_, M+M_
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RESULTS: REACH

« Assuming negligible background, FASER may probe
parameter space with m,~ 10 - 500 MeV, ¢ ~ 106 - 10
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« SHIP probes much greater region at low ¢, but this is
mostly excluded already. SHiP reach at high m, is from
direct QCD production, which we have neglected
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SUMMARY AND OUTLOOK

 The LHC has seen nothing yet. Adding a small, inexpensive
detector to improve LHC's discovery prospects seems like a
good idea

« Related ideas: old proposals for long-lived particles; new
ideas, like MATHUSLA and MilliQan; beam dump

experiments, like SeaQuest and SHiP; very forward
experiments, like CT-PPS

Feng, Smith (2004); Hamaguchi, Kun, Makaya, Nojiri (2004); De Roeck, Ellis, Gianotti, Moortgat,
Olive, Pape (2004); Chou, Curtin, Lubatti (2016); Ball et al. (2016); Alekhin et al. (2016); Aidala et
al. (2017); Albrow (2015)

« FASER is unique in that it and targets light, weakly-coupled
new particles at low p;, runs simultaneously with the LHC
program, and should be very small and inexpensive
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SUMMARY AND OUTLOOK

* Far location: appears to be background free. A small 20cm
X 20cm x 10m detector ~400m from the IP would provide
world-leading sensitivity to dark photons

* Near location: a far more challenging environment, but if
backgrounds can be controlled, a tiny 4cm x 4cm x 5m
detector can do even better

 Work to do: We've considered dark photons. A multitude of
other new physics ideas are also worth considering

 Work to do: simulate near detector beam-induced
backgrounds, specify detector design, integrate into LHC
beam infrastructure, ...

17 Sep 2017 Feng 21



