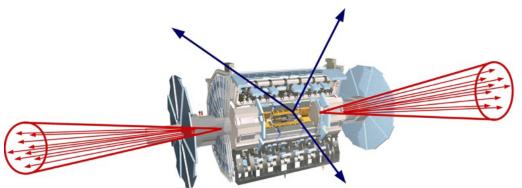
FASER

FORWARD SEARCH EXPERIMENT AT THE LHC

International Workshop on WIMP Dark Matter and Beyond

Shanghai Jiao Tong University

Jonathan Feng, UC Irvine

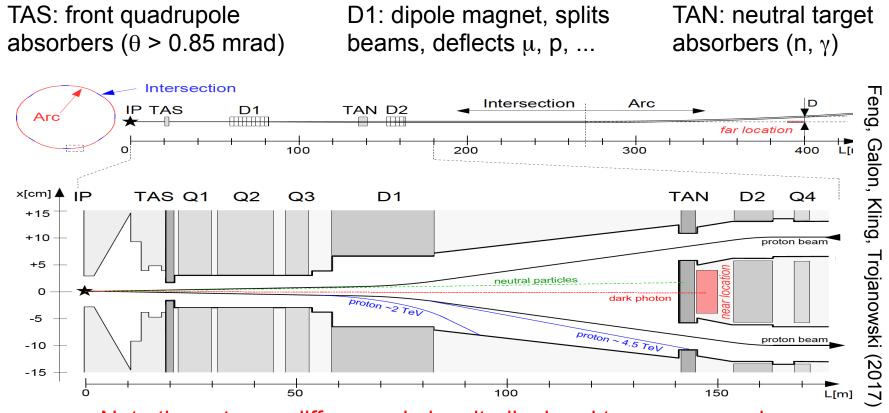

[based on 1708.09389 with Iftah Galon, Felix Kling, Sebastian Trojanowski]

17 September 2017

SUMMARY

- New physics searches at the LHC focus on high p_T. This is appropriate for heavy, strongly coupled particles
 σ ~ fb to pb → N ~ 10³ 10⁶, produced isotropically
- However, if new particles are light and weakly coupled, this may be completely misguided. Instead should exploit

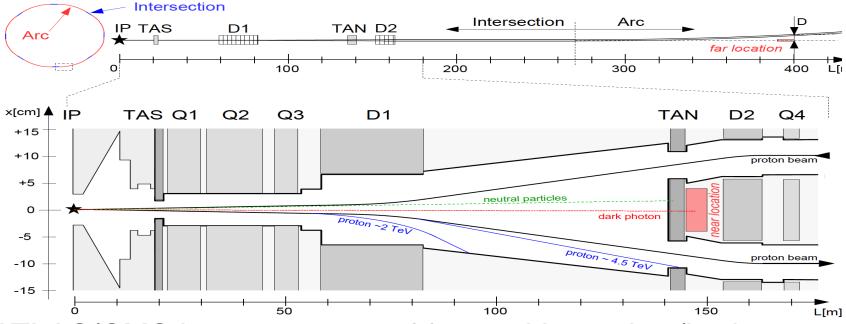
− $\sigma_{\rm inel}$ ~ 100 mb → N ~ 10¹⁷, θ ~ $\Lambda_{\rm QCD}$ / E ~ 250 MeV / TeV ~ mrad


 We propose a small, inexpensive experiment, FASER, to be placed in the very forward region of ATLAS/CMS, ~150-400 m downstream of the IP, and analyze its discovery potential

OUTLINE

- Very Forward Region Infrastructure
- New Physics Example: Dark Photons
- Signal
- Backgrounds
- Results
- Summary and Outlook

VERY FORWARD REGION INFRASTRUCTURE


 LHC ring consists of 8 straight 545 m intersections and 8 curved arcs. The infrastructure common to IP1 and IP4 (also have ALFA, CASTOR, LHCf, TOTEM, etc.):

Note the extreme difference in longitudinal and transverse scales

ON-AXIS LOCATIONS

- We want to place FASER along the beam collision axis
 - Far location: 400 m from IP, after beams curve, 2.6 m from the beams
 - Near location: 150 m, after TAN, between the beams

- ATLAS/CMS beams cross at 285 µrad in vertical/horizontal plane → shifts far (near) location by 5.7 (2.1) cm
- HL-LHC: 285→590 µrad, TAN→TAXN moves forward 10 m,... We assume current parameters, FASER is exactly on-axis ^{17 Sep 2017}

DARK PHOTONS

- Dark matter is our most solid evidence for new particles. In recent years, the idea of dark matter has been generalized to dark sectors
- Dark sectors motivate light, weakly coupled particles (WIMPless miracle, SIMP miracle, small-scale structure, ..)
- A prominent example: dark photons

SM ---
$$\epsilon F_{\mu\nu}F_{\text{hidden}}^{\mu\nu}$$
 --- Hidden U(1)

- The resulting theory contains a new gauge boson A' with mass $m_{A'}$ and ϵQ_f couplings to SM fermions f

DARK PHOTON PROPERTIES

• Produced in meson decays

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

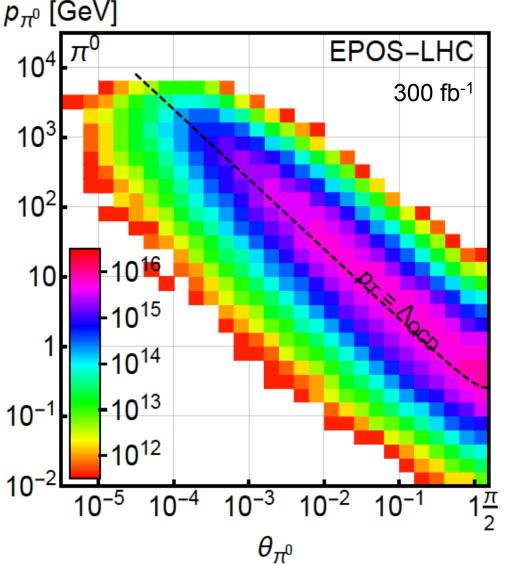
and also through dark bremsstrahlung pp \rightarrow p A' X and direct QCD processes qq \rightarrow A' X (requires pdfs at low Q², x)

 Travels long distances through matter without interacting, decay mainly to e⁺e⁻ (and μ⁺μ⁻ for m_{A'} > 2 m_μ)

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \quad E_{A'} \gg m_{A'} \gg m_e$$

The essential tension: low ε → low event rate, high ε → decays too fast. Is there a happy middle ground?

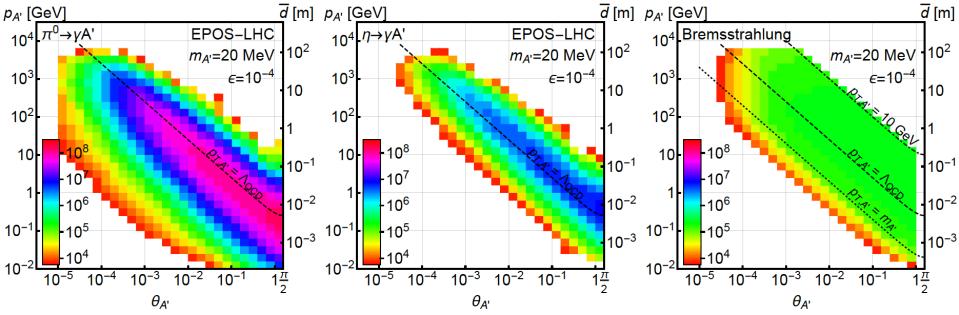
DARK PHOTON STATUS


- 10^{-4} KLOE HADES KLOE KLOE HPS 10^{-5} BaBar $a_{\mu,5\sigma}$ ena. APEX PHENIX Test $a_{\mu,\pm 2\sigma}$ favored A1 10^{-6} NA48/2 E774 ae DarkLigh PADME APF 10^{-7} VEPP-3 Belle-II MMAPS LHCb Ĩ 5ab⁻¹ 10⁻⁸ E141 HPS 10⁻⁹ LHCb **10**⁻¹⁰ Orsay/E137/CHARM/U70 Pre-2021 **10**⁻¹¹ 10^{-3} 10^{-2} 10⁻¹ $m_{A'}$ [GeV] Cosmic Visions White Paper (2017)
- Lots of unconstrained parameter space with

 $m_{A'} > 10 \text{ MeV}$ $\epsilon \sim 10^{-6} - 10^{-3}$

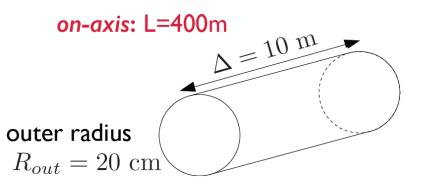
We will present results for 2 representative model points: $(m_{A'}, \epsilon) =$ (20 MeV, 10⁻⁴) (100 MeV, 10⁻⁵)

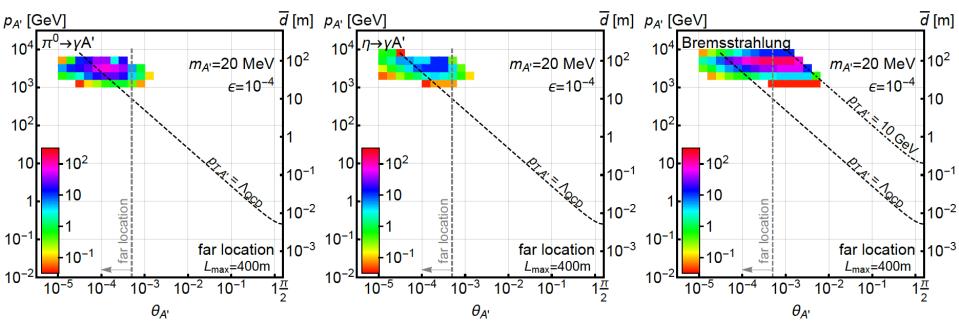
PION PRODUCTION AT THE LHC


- Forward particle production simulations and models have been greatly informed by LHC data
- EPOS-LHC, SIBYLL 2.3, QGSJETII-04 agree very well
- Enormous event rates $(\sigma_{inel} \sim 70 \text{ mb}, N_{inel} \sim 10^{17}), 10^{-1}$ production is peaked at $p_T \sim \Lambda_{QCD}$, but with 10^{-2} significant width

DARK PHOTON PRODUCTION

- Consider π^0 decay, η decay, dark bremsstrahlung
- Results for 1st representative model point:

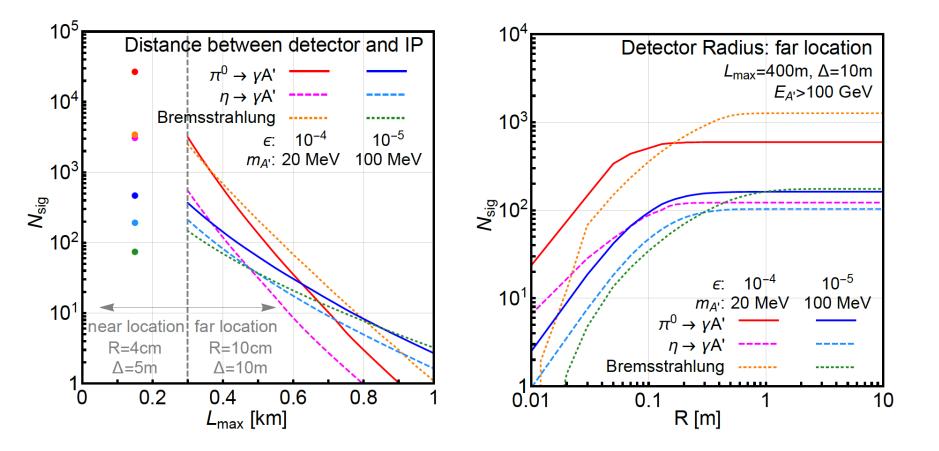

 $(m_{A'}, \epsilon) = (20 \text{ MeV}, 10^{-4})$



Nothing surprising: in π⁰ → A' γ, relative to pion distributions, rates suppressed by ε², energies reduced by factor of ~2

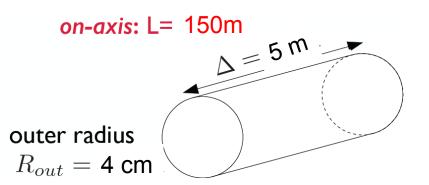
DARK PHOTONS IN THE FAR DETECTOR

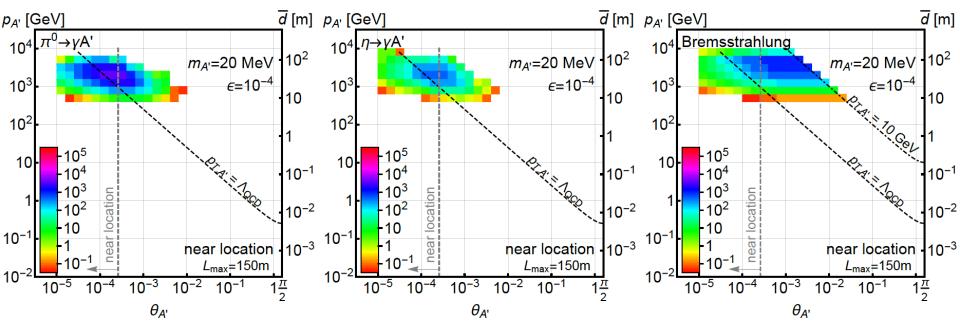
 Now require dark photons to decay in the far detector: consider cylindrical detector with volume ~1 m²



 Only the highest energy A's survive, but there are still many of them, and they are highly collimated

17 Sep 2017


SIGNAL DEPENDENCE ON DETECTOR SPECS


 Moving the detector closer helps At the far location, R = 20 cm captures almost all the A'

DARK PHOTONS IN THE NEAR DETECTOR

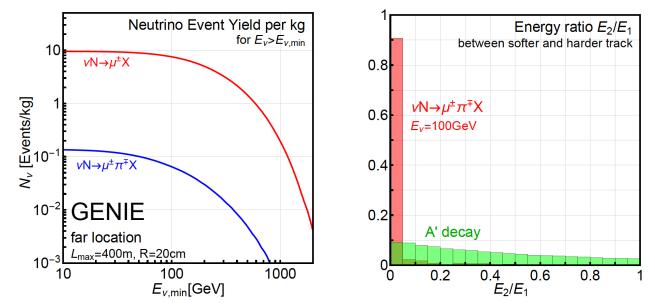
 Now require dark photons to decay in the near detector: detector volume only ~0.1 m² !

 Moving the detector closer → more dark photons decay in the detector, even though the after-TAN location is crowded

BACKGROUNDS

- The signal is two simultaneous, opposite-sign, highly-energetic (E > 500 GeV) charged particles that start in the detector at a vertex and point back to IP → a tracker-based technology
- The opening angle is $\theta_{ee} \sim m_{A'} / E \sim 10 \ \mu rad$. After traveling $\sim 1 \ m$, this leads to 10 μm separation, too small to resolve $\rightarrow a$ small magnetic field

$$h_B \approx \frac{ec\ell^2}{E}B = 3 \text{ mm} \left[\frac{1 \text{ TeV}}{E}\right] \left[\frac{\ell}{10 \text{ m}}\right]^2 \left[\frac{B}{0.1 \text{ T}}\right]$$


- Many backgrounds are eliminated simply by virtue of FASER's location. Cosmic ray background is negligible, charged particles from IP are bent away by D1 magnet
- Leading backgrounds are neutrino-induced and beam-induced backgrounds

NEUTRINO-INDUCED BACKGROUNDS

• If $\pi^+ \rightarrow \mu \nu$ before D1 magnet, resulting neutrinos can propagate into FASER, interact through

 $\nu_{\ell}N \to \ell X \qquad \nu N \to \mu^{\pm}\pi^{\mp}X$

 Second process eliminated by requiring no other activity, tracks start in the detector and have high and symmetric energies

• $v \rightarrow K_{S,L} \rightarrow 2$ charged tracks also negligible with same cuts

BEAM-INDUCED BACKGROUNDS: FAR LOCATION

- Particles from IP must pass through ~ 50 m of matter. Hadrons, electrons are stopped, only muons are relevant
- Muon background from 2011 ATLAS study can be used to determine muon background at far location. Requiring E_{μ} > 100 GeV, the flux is

$$\Phi \sim 10^{-3} \text{ Hz cm}^{-2}$$

- The muon arrival times correspond to bunch crossings. Accounting for the bunch structure and assuming a timing resolution of 100 (10) ps, get ~0.1 (~0.01) coincident $\mu^+\mu^-$ pairs in 1 LHC year
- Far location appears to be background-free

BEAM-INDUCED BACKGROUNDS: NEAR LOCATION

- Far more challenging environment
- Dedicated simulation using MARS/FLUKA/etc. should be used, but we can use published results to get an estimate Mokhov, Rakhno, Kerby, Strait (2003)
- Hadrons and electrons absorbed in the TAN
- Coincident muon background ~10⁸ per LHC year. Can be greatly suppressed by requiring tracks to start in the detector and reconstruct a vertex, and requiring high and symmetric energies
- Electron signal is clean if electrons can be distinguished
 from muons

RESULTS: EVENT RATES

 Up to 10⁴ dark photons arrive in FASER in 300 fb⁻¹ in currently unconstrained regions of dark photon parameter space

$$pp \to A'X$$
, A' travels ~ $\mathcal{O}(100)$ m, $A' \to e^+e^-$, $\mu^+\mu^-$
 10^{-3}
 π^0
 $L_{max}=400m, \Delta=10m, R=20cm$
 $L=300fb^{-1}, E_A>100GeV$
 10^{-4}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-4}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 10^{-5}
 $10^{$

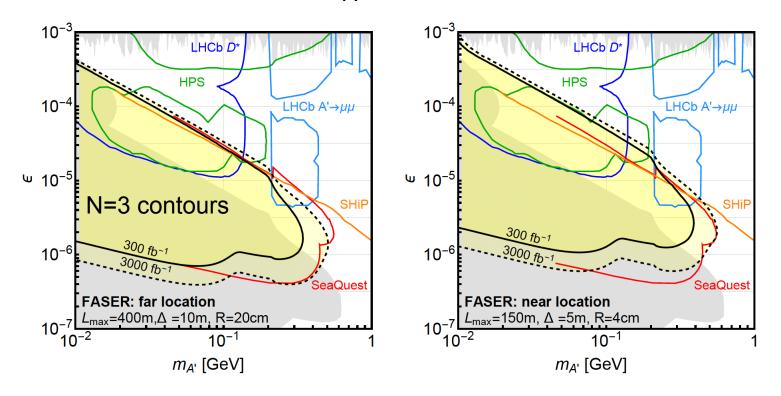
1

 10^{-2}

10⁻¹

 $m_{A'}$ [GeV]

 10^{-2}


10⁻¹

 $m_{A'}$ [GeV]

1

RESULTS: REACH

• Assuming negligible background, FASER may probe parameter space with $m_{A'} \sim 10$ - 500 MeV, $\epsilon \sim 10^{-6} - 10^{-3}$

 SHiP probes much greater region at low ε, but this is mostly excluded already. SHiP reach at high m_{A'} is from direct QCD production, which we have neglected
 17 Sep 2017

SUMMARY AND OUTLOOK

- The LHC has seen nothing yet. Adding a small, inexpensive detector to improve LHC's discovery prospects seems like a good idea
- Related ideas: old proposals for long-lived particles; new ideas, like MATHUSLA and MilliQan; beam dump experiments, like SeaQuest and SHiP; very forward experiments, like CT-PPS

Feng, Smith (2004); Hamaguchi, Kun, Makaya, Nojiri (2004); De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape (2004); Chou, Curtin, Lubatti (2016); Ball et al. (2016); Alekhin et al. (2016); Aidala et al. (2017); Albrow (2015)

• FASER is unique in that it and targets light, weakly-coupled new particles at low p_T , runs simultaneously with the LHC program, and should be very small and inexpensive

SUMMARY AND OUTLOOK

- Far location: appears to be background free. A small 20cm x 20cm x 10m detector ~400m from the IP would provide world-leading sensitivity to dark photons
- Near location: a far more challenging environment, but if backgrounds can be controlled, a tiny 4cm x 4cm x 5m detector can do even better
- Work to do: We've considered dark photons. A multitude of other new physics ideas are also worth considering
- Work to do: simulate near detector beam-induced backgrounds, specify detector design, integrate into LHC beam infrastructure, ...