WIMPS AND THEIR RELATIONS

Jonathan Feng University of California, Irvine 27 October 2008 MIT Nuclear and Particle Physics Colloquium

DARK MATTER

- Unambiguous evidence for new physics
- Intimately connected to central problems
 - electroweak symmetry breaking
 - structure formation
- Remarkable precision $\Omega_{\rm DM}h^2 = 0.1099 \pm 0.0062$

WMAP (2008)

OPEN QUESTIONS

- What particle forms dark matter?
- What is its mass?
- What is its spin?
- What are its other quantum numbers and interactions?
- Is dark matter composed of one particle species or many?
- How was it produced?
- When was it produced?
- Why does $\Omega_{\rm DM}$ have the observed value?
- What was its role in structure formation?
- How is dark matter distributed now?
- Is it absolutely stable?

CANDIDATES

- Observational constraints
 - Not baryonic (≠ weaklyinteracting)
 - Not hot (\neq cold)
 - Not short-lived (≠ stable)
- Masses and interaction strengths span many, many orders of magnitude

• Focus on WIMPs, superWIMPs, WIMPless dark matter

THE "WIMP MIRACLE"

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi\chi \leftrightarrow \overline{f}f$$

(2) Universe cools: $\chi \chi \neq \overline{f} f$ (3) χs "freeze out": $\chi \chi \notin f f$

• The amount of dark matter left over is inversely proportional to the annihilation cross section:

 $\Omega_{\rm DM} \sim \langle \sigma_{\rm A} v \rangle^{-1}$

- What is the constant of proportionality?
- Impose a natural relation:

 $\sigma_{\rm A}\,{=}\,k\alpha^2/m^2$, $~so~\Omega_{DM}\,{\sim}\,m^2$

[band width from k = 0.5 - 2, S and P wave]

Remarkable "coincidence": $\Omega_{DM} \sim 0.1$ for m $\sim 0.1 - 1$ TeV Cosmology alone tells us we should explore the weak scale

STABILITY

- This all assumes the new particle is stable. Why should it be?
- LEP's Cosmological Legacy

 In many theories, dark matter is easier to explain than no dark matter

New Particle States

WIMPS

Recent proliferation of examples:

• Supersymmetry: R-parity \rightarrow Neutralinos

Goldberg (1983); Ellis et al. (1984)

Universal Extra Dimensions: KK-parity
 → Kaluza-Klein DM

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

• Branes: Brane-parity \rightarrow Branon DM

Cembranos, Dobado, Maroto (2003)

• Little Higgs: T-parity → T-odd DM

Cheng, Low (2003)

NEUTRALINOS

- The neutralino is the classic WIMP
 - $\quad \chi \in \left(\, \tilde{\gamma}, \, \tilde{Z}, \, \tilde{H_u}, \, \tilde{H_d} \, \right)$
 - ~ 50 GeV 1 TeV
 - weakly-interacting
 - naturally the lightest standard model superpartner in many models

 Particle physics alone → neutralinos have all the right properties to be WIMP dark matter

RELIC DENSITY

$\Omega_{DM}h^2$ stringently constrains models

Cosmology excludes many possibilities, favors certain regions

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

DIRECT DETECTION

- WIMP properties: v ~ 10⁻³ c Kinetic energy ~ 100 keV Local density ~ 1 / liter
- Detected by nuclear recoil in underground detectors. Two approaches:
 - Background-free detection
 - Annual modulation
- Spin-independent scattering
 - Theories: χq
 - Experiments: χ -nucleus
 - Meet in the middle: χp

THEORETICAL PREDICTIONS

• Model-dependent, but in SUSY we can say something. There are two classes of annihilation processes:

- Neutralino DM → gravity-mediation
 SUSY flavor and CP problems → heavy sleptons and squarks
 Relic density → mixed Bino-Higgsino neutralinos with σ ~ 10⁻⁸ pb
- Many SUSY models (mSUGRA, general focus point SUSY, gauginomediated, more minimal SUSY, 2-1 models, split SUSY) will be tested in the next few years

DIRECT DETECTION: DAMA

Annual modulation expected

Drukier, Freese, Spergel (1986)

DAMA: 8σ signal with
 T ~ 1 year, max ~ June 2

2-6 keV

CHANNELING

- DAMA's results have been puzzling, in part because the allowed region is excluded by experiments
- This may be ameliorated by astrophysics and channeling: in crystalline detectors, efficiency for nuclei recoil energy → electron energy depends on direction
- Channeling reduces threshold, shifts allowed region to lower masses. Consistency restored?

Gondolo, Gelmini (2005) Drobyshevski (2007), DAMA (2007)

TAKING STOCK

- WIMPs are astrophysically identical
 - Weakly-interacting
 - Cold
 - Stable
- Is this true of all DM candidates?
- No. But is this true of all DM candidates motivated by particle physics and the "WIMP miracle"?
- No! SuperWIMPs: identical motivations, but qualitatively different implications

SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

Supersymmetry: Graviton \rightarrow Gravitino \tilde{G} Mass ~ 100 GeV; Interactions: only gravitational (superweak)

• Ĝ not LSP

Assumption of most of literature

• Ĝ LSP

 Completely different cosmology and particle physics

SUPERWIMP RELICS

- Suppose the gravitino G̃ is the LSP
 - WIMPs freeze out as usual

Ĝ

Gravitinos naturally inherit the right density, but interact only gravitationally – they are superWIMPs (also KK gravitons,, axinos, etc.)

Feng, Rajaraman, Takayama (2003); Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Feng, Su, Takayama (2004); Buchmuller, Hamaguchi, Ratz, Yanagida (2004); Roszkowski, Ruiz de Austri, Choi (2004); Brandeburg, Covi, Hamaguchi, Roszkowski, Steffen (2005); ...

CHARGED PARTICLE TRAPPING

- SuperWIMPs are produced by decays of metastable particles, which can be charged.
- Charged metastable particles will be obvious at colliders, can be trapped and moved to a quiet environment to study their decays.
- Can catch 1000 per year in a 1m thick water tank

Feng, Smith (2004) Hamaguchi, Kuno, Nakawa, Nojiri (2004) De Roeck et al. (2005)

IMPLICATIONS FROM CHARGED PARTICLE DECAYS

$$\tau(\tilde{l} \to l\tilde{G}) = \frac{6}{G_N} \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^5} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^{-4}$$

- Measurement of τ , $m_{\tilde{l}}$ and $E_{l} \rightarrow m_{\tilde{G}}$ and GN
 - Probes gravity in a particle physics experiment!
 - Measurement of G_N on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant

SUPERWIMP COSMOLOGY

Late decays can modify BBN (Resolve ^{6,7}Li problems?)

Late decays can modify CMB black body spectrum (µ distortions)

SMALL SCALE STRUCTURE

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by $\lambda_{\text{FS}},\, \textbf{Q}$
- Warm DM with cold DM pedigree

Dalcanton, Hogan (2000)

- Lin, Huang, Zhang, Brandenberger (2001)
 - Sigurdson, Kamionkowski (2003)
- Profumo, Sigurdson, Ullio, Kamionkowski (2004) Kaplinghat (2005)
- Cembranos, Feng, Rajaraman, Takayama (2005)
 - Strigari, Kaplinghat, Bullock (2006)
 - Bringmann, Borzumati, Ullio (2006)

WIMPLESS DARK MATTER

- Start over: What do we really know about dark matter?
 - All solid evidence is gravitational
 - Also solid evidence *against* strong and EM interactions
- A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is *hidden*

Lee, Yang (1956); Gross, Harvey, Martinec, Rohm (1985)

- What one seemingly loses
 - The WIMP miracle
 - Non-gravitational signals

HIDDEN SECTORS

- Can we recover the WIMP miracle, but with hidden DM?
- Consider gauge-mediated SUSY breaking with one or more hidden sectors
- Each hidden sector has its own gauge groups and couplings

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

THE WIMPLESS MIRACLE

Feng, Kumar (2008)

Particle Physics

Superpartner masses, interaction strengths depend on gauge couplings Cosmology

$$\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M}$$

$$\label{eq:Omega} \begin{split} \Omega \text{ depends only on the } \\ \text{SUSY breaking sector:} \\ \Omega_{\text{X}} \thicksim \Omega_{\text{WIMP}} \thicksim \Omega_{\text{DM}} \end{split}$$

Any hidden particle with mass ~ m_X will have the right thermal relic density (for any m_X)

WIMPLESS DARK MATTER

 The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

 These models map out the remaining degree of freedom

 This framework decouples the WIMP miracle from WIMPs, gives a new class of candidates with WIMP pedigree, but with a range of masses/couplings

STABILITY

• This requires that an m_X particle be stable. Can one be?

 If the hidden sector is a flavor-free MSSM, a natural NLSP candidate, the stau (or tau), would be stabilized by charge conservation.

WIMPLESS DETECTION

- WIMPless DM may have only gravitational effects
- But connectors with both MSSM and hidden charges may mediate interactions with the SM

Related ideas

Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008) Pospelov, Ritz (2008)

CONCLUSIONS

- WIMPs and related ideas have never been more motivated
 - WIMP miracle
 - Cosmological legacy of LEP \rightarrow stable new particle
- The WIMP miracle motivates three classes of candidates
 - WIMP dark matter
 - superWIMP dark matter
 - WIMPless dark matter
- If anything discussed here is realized in nature, life will be very interesting in the coming years