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COSMOLOGY - NEW PHYSICS

s .. | * Cosmology today provides
No Big Bang much of the best evidence for
new microphysics

Supernovae  What can we learn from dark
matter about SUSY — SUSY
breaking, its mediation,
superpartner spectrum,
expected signals?
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DARK MATTER: WHAT WE KNOW

* How much there is:

Qg = 0.23 + 0.04

« What it's not:

Not short-lived: T > 1070 years
Not baryonic: Qg = 0.04 + 0.004
Not hot: “slow” DM is required to form structure
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DARK MATTER: WHAT WE DON'T KNOW

 Whatis its mass?

 What is its spin?

« What are its other quantum numbers and interactions?
 Is it absolutely stable?

« What is the origin of the dark matter particle?

 |s dark matter composed of one particle species or many?
 How was it produced?

 When was it produced?

* Why does Qp,, have the observed value?

« What was its role in structure formation?

 How is dark matter distributed now?
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Dark Matter Candidates

« Given the few constraints, it is not surprising that there are
many candidates: axions, thermal gravitinos, neutralinos,
Kaluza-Klein particles, wimpzillas, self-interacting particles,
self-annihilating particles, fuzzy dark matter,
superWIMPs, ...

 Masses and interaction strengths span many, many orders
of magnitude

« But independent of cosmology, new particles are required
to understand the weak scale. \What happens when we
add these to the universe?
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Cosmological Implications

(1) Assume the new
particle is initially in

thermal equilibrium:

wy — ff

(2) Universe cools:
N — NEQ ~ e_m/T

(3) ys “freeze out”:
N ~ const
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® The amou nt Of dark matter Mass of Dark Matter Particle (TeV)

left over is inversely . —
proportional to the
annihilation cross section:

30%

~ -1
Qpp ~ <opV> |
10%

« What is the constant of
proportionality?

of Total -Dark Matter Density

3%

action

* Impose a natural relation:

10?2 &

HEPAP LHC/ILC Subpanel (2006)
G = ka2/m2 . SO QDM " m2 [band width from k = 0.5 — 2, S and P wave]

Qpy ~ 0.1 form~ 100 GeV -1 TeV.
Cosmology alone tells us we should explore the weak scale.
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IMPLICATIONS

» Electroweak theories often predict relevant amounts of
dark matter. In fact, dark matter is easier to explain than
no dark matter:

Exp. constraints < discrete symmetries < stable DM

* In SUSY, this requires that the gravitino be heavier than
the neutralino. This disfavors low-scale (gauge-mediated)
SUSY breaking, favors high-scale (gravity-mediated) SUSY
breaking:

« SUSY does not decouple cosmologically: Q ~ m2. Low
energy SUSY is motivated independent of naturalness.
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NEAR FUTURE PROSPECTS

Drawings

Reality

Dipele installation in the tunnsal

Lyn Evans: 1 fb-' in 2008 is guaranteed
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IDENTIFYING DARK MATTER
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Contributions to Neutralino
WIMP Annihilation

Sl

20 June 06 Feng 11



RELIC DENSITY DETERMINATIONS
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SuperWIMP Dark Matter

Feng, Rajaraman, Takayama (2003)

» Collider signals (and other dark matter
searches) rely on DM having weak force
interactions. Is this required?

« Strictly speaking, no — the only required DM
interactions are gravitational.

* But the relic density “coincidence” strongly
prefers weak interactions.

Is there an exception to this rule?
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SuperWIMPs: The Basic ldea

» High-scale SUSY breaking
supergravity has a weak-scale
mass G. Suppose it's the LSP.

—
o
-

« WIMPs freeze out as usual

WIMP

_—

G

« But then all WIMPs decay to
gravitinos after

1 10 100 1000 MP|2/MW3 ~ a month

x=m/T (time -)

Gravitinos naturally inherit the right density, but interact only
gravitationally — they are superWIMPs
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SuperWIMP Implications

« SuperWIMPs evade all particle dark matter searches; all
eventrates R > 1032 R.

* Apparently even more troubling is the gravitino problem:
late decays to the gravitino destroy the successes of Big
Bang nucleosynthesis. Weinberg noted that the
superpartner mass scale should be > 10 TeV for decays
to happens before BBN.

* The scenario appears excluded by cosmology and
untestable in particle/astroparticle experiments.

Luckily, both conclusions are too hasty...
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Big Bang Nucleosynthesis

Late decays may modify light element abundances
Cyburt, Ellis, Fields, Olive &2002); Kawasaki et al. (2004); Jedamzik (2004); Cerdeno et al. (2005)
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Structure Formation

Cold dark matter (WIMPs) seeds
structure formation. Simulations
may indicate more central mass
and more cuspy halos than
observed — cold dark matter is
too cold.

SuperWIMPs are produced at

t ~ month with large velocity,
smooth out small scale
structure.
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Cembranos, Feng, Rajaraman, Takayama (2005)

Kaplinghat (2005), Jedamzik (2005)

SuperWIMPs combine Cold DM (€2 ~ 0.1) and Warm DM

(structure formation) virtues.
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SUPERWIMPS AT THE LHC

« Cosmology = metastable Slepton

charged sleptons with lifetimes
of days to months

trap

» Sleptons can be trapped and
moved to a quiet environment to

study their decays 1> 1 G

* A 1 m thick shell of water can
catch ~ 104 sleptons per year

Feng, Smith (2004) .
Hamaguchi, Yuno, Nayaka, Nojiri (2004) Reservoir
Ellis et al. (2005)
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What we learn from slepton decays

« We are sensitive to (M.-suppressed) gravitational effects in
a particle physics experiment

~ ~ 1 m> _ m% !
I'({— (G) = Li1-—=%¢
G

A8 M2 m?2 mf;

Buchmuller, Hamaguchi, Ratz, Yanagida (2004)
e Measurement of my, I > m G Feng, Rajaraman, Takayama (2004)
-2 Qs. SuperWIMP contribution to dark matter
- F. Supersymmetry breaking scale
- BBN, CMB, structure formation in the lab

* Measurement of ny, I and E, 2> ms and M.
- Measurement of Gy, ©N fundamental particle scale
—> Gravitino is graviton partner, can quantitatively confirm supergravity
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CONCLUSIONS

« Cosmology suggests there may be new particles at
the weak scale, independent of naturalness

* In SUSY, dark matter relic density “coincidence” -
high-scale (gravity-mediated) SUSY breaking

e If neutralino WIMPs, LHC will discover them in the
next few years

 If gravitino superWIMPs, LHC is likely to produce
long-lived sleptons that decay to gravitinos, allowing
the quantitative confirmation of supergravity
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