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WHAT IS THE UNIVERSE
MADE OF?

An age old question, but...

Recently there have been remarkable advances in our
understanding of the Universe on the largest scales

We live in interesting times: for the first time in history, we
have a complete picture of the Universe
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The Evidence

Rotation curves of galaxies and galactic clusters
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« Expect v, ~ r 2 beyond luminous region

* Instead find v, ~ constant
 Discrepancy resolved by postulating dark matter
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Synthesis

 No Big Bang

Supernovae

 Remarkable agreement

Dark Matter: 23% + 4%
Dark Energy: 73% £ 4%
[Baryons: 4% £ 0.4%
Neutrinos: ~0.5%]

 Remarkable precision (~10%)

« Remarkable results
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Historical Precedent
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What are Dark Matter and Dark Energy?

We have no idea. But so far, these problems appear to be
completely different.

Dark Matter Dark Energy
* No known particles « All known particles
contribute contribute
* Probably tied to * Probably tied to
M, ~ 100 GeV Moo ~ 107° GeV
« Several compelling * No compelling

solutions solutions
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DARK MATTER

ELEMENTARY .
PARTICLES Known DM properties

» Stable
* Non-baryonic

 Cold

DM: precise, unambiguous evidence
for new particles
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Dark Matter Candidates

« The Wild, Wild West of particle physics: primodial black
holes, axions, warm gravitinos, neutralinos, Kaluza-Klein
particles, Q balls, wimpzillas, superWIMPs, self-interacting
particles, self-annihilating particles, fuzzy dark matter,...

* Masses and interaction strengths span many, many orders
of magnitude

« But independent of cosmology, new particles are required
to understand the weak force
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Weak Force and Higgs Boson

I Classical Quantum
| |

| |

| |

o = X +
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2 _ P — 1 A2/\2

mp - (mh)O 1672

m,~ 100 GeV, A ~10'°® GeV - cancellation of 1 part in 1034
At M

weak

~ 100 GeV we expect new weakly interacting particles:
supersymmetry, extra dimensions, something!
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Cosmological Implications

(1) Initially, new particle is = r———"

0001

in thermal equilibrium: == ¢
XX — ff 312

(2) Universe cools:
— ~ ao-m/T gﬂm
N=Ngy~e™ Foor

(3) xs “freeze out”:
N ~ const

1000
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Comoving Number Density
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Final N fixed by annihilation
cross section:

QDM - 01 (Gweak/GA)
Remarkable!
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Domestic diva Martha
Stewart sells ImClone
stock — the next day,
stock plummets

Coincidences? Maybe, but worth serious investigation!
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NOTE

I've assumed the new particle is stable

Problems (proton decay, extra particles, ...)

!

Discrete symmetry

)
Stability

* In many theories, dark matter is easier to
explain than no dark matter
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DARK MATTER
CANDIDATES

Candidates that pass the Martha Stewart test

Ones you could bring home to mother. — V. Trimble
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WIMP Dark Matter

WIMPs: weakly-interacting massive particles

Supersymmetry: extends rotations/boosts/translations, string
theory, unification of forces, ... Predicts a partner particle
for each known particle

The prototypical WIMP: neutralino x O (y, Z, H,, H,)

Particle physics alone = all the right properties: lightest
superpartner, stable, mass ~ 100 GeV

Goldberg (1983)
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Qpu = 23% * 4% stringently constrains

models
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Cosmology highlights certain regions, detection strategies
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Extra Dimensional Dark Matter

Servant, Tait (2002) Cheng, Feng, Matchev (2002)

« Extra spatial dimensions ¢ Particles moving in extra
could be curled up into dimensions appear as a set of
small circles. copies of normal particles.

—2/R — DM

Mass
3
T

Garden hose
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WIMP Detection: No-Lose Theorem

< <
X f
Crossing
q
/\ symmetry
X f Y e
Annihilation Scattering

Correct relic density - Efficient annihilation then
—> Efficient annihilation now
-> Efficient scattering now
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Direct Detection

DAMA Signal and
0% Others’ Exclusion Contours
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Direct Detection: Future
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Indirect Detection

Dark Matter Madlibs!

Dark matter annihilates in to
a place

, which are detected by

particles an experiment
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Dark Matter annihilates in __the galactic center to
a place
photons , which are detected by Cerenkov telescopes .
some particles an experiment
Typically
XX 7YY,

sO  XXx— ff—y
HESS: ~ 1 TeV signal

If DM, m, ~12 TeV

Horns (2004)
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Dark Matter annihilates in the center of the Sun to

a place
neutrinos , which are detected by AMANDA, IceCube
some particles an experiment
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Dark Matter annihilates in the halo to

a place
positrons , which are detected by _AMS on the ISS
some particles an experiment
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SuperWIMP Dark Matter

Feng, Rajaraman, Takayama (2003)

 All of these signals rely on DM having weak
force interactions. |s this required?

* No — the only required DM interactions are
gravitational (much weaker than weak).

* But the relic density argument strongly prefers
weak interactions.

Is there an exception to this rule?
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No-Lose Theorem: Loophole
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* Consider SUSY again:

Gravitons = gravitinos G
Pagels, Primack (1982)

« What if the G is the lightest
superpartner?

WIME, — Mo2IM,,2 ~ month

~

G

A month passes...then all
WIMPs decay to gravitinos

Gravitinos naturally inherit the right density, but they interact
only gravitationally — they are “superWIMPSs”
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SuperWIMP Detection

« SuperWIMPs evade all conventional dark matter searches.
But superweak interactions - very late decays [ — G [ >
cosmological signals. For example: BBN, CMB.
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PROSPECTS

If the relic density “coincidence” is no coincidence and DM
IS either WIMPs or superWIMPs, the new physics behind
DM will very likely be discovered in this decade:

Direct dark matter searches
Indirect dark matter searches

The Tevatron at Fermilab
The Large Hadron Collider at CERN (2008)
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What then?

« Cosmology can't  Particle colliders
discover SUSY can’t discover DM
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SYNERGY

Temperature / Energy
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Colliders as WIMP Labs

e The LHC and International Linear Collider will discover
WIMPs and determine their properties at the % level.

« Consistency of

WIMP properties (particle physics)
WIMP abundance (cosmology)

will extend our understanding of the Universe back to
I'=10GeV, t=1ns
(Cf.BBNat T=1MeV,t=1S5s)
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RELIC DENSITY DETERMINATIONS
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Parts per mille agreement for Q, - discovery of dark matter
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Colliders as SuperWIMP Labs

Slepton
Sleptons are heavy, charged, live ~ a trap
month — can be trapped, then moved A
to a quiet environment to observe - /
decays.

LHC, ILC can trap as many as =
~10,000/yr in 10 kton trap.

Hamaguchi, Kuno, Nakaya, Nojiri (2004)
Feng, Smith (2004)

Lifetime - test gravity at colliders,
measure Gy for fundamental particles. Reservoir
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Mapping the Dark Universe

Once dark matter is identified, detection
experiments tell us about dark matter distributions

AMAND.

ASTROPHYSICS VIEWPOINT:
LHC/ILC ELIMINATE PARTICLE PHYSICS UNCERTAINTIES,
ALLOW ONE TO DO REAL ASTROPHYSICS
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CONCLUSIONS

Extraordinary progress, but a long way from
complete understanding

Cosmology + Particle Physics -
New particles at 1 TeV: just around the corner

Bright prospects!
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