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Dark Matter
• We live in interesting times:

– We know there is dark matter, and how much
– We have no idea what it is

• This talk:  Recent developments with a focus on 
implications for space-based experiments 

• The Wild, Wild West of particle physics:
– Neutralinos, axions, Kaluza-Klein DM, Q balls, 

wimpzillas, superWIMPs, self-interacting DM, 
warm and fuzzy DM,… 
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A Selection Rule: DM and the 
Weak Scale
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• Universe cools, leaves 
a residue of dark matter 
with ΩDM ~ 0.1 (σWeak/σ) 
– remarkable!

• 13 Gyr later, Martha 
Stewart sells ImClone
stock – the next day, 
stock plummets

Coincidence?  Maybe, but worth investigating!
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Neutralino Dark Matter
Goldberg (1983)  
Ellis et al. (1983)

• Predicted by supersymmetry, motivated by 
particle physics considerations

• One of many new supersymmetric particles
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SUSY Particles
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Neutralino Properties

Mass: ~ 100 GeV
Interactions: weak (neutrino-like)

The “typical” WIMP (but note: neutralinos are Majorana
fermions – they are their own anti-particle)

• Direct detection: see Matchev’s talk

• Indirect detection: χχ annihilation
in the halo to e+’s: AMS-02, PAMELA…
in the center of the galaxy to γ’s: GLAST, AMS/γ, telescopes,…
in the center of the Sun to ν’s: AMANDA, NESTOR, ANTARES,…
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Positrons
Turner, Wilczek (1990)

Kamionkowski, Turner (1991)

• The signal: hard positrons

• Best hope: χχ e+e−

• Problem: χ are Majorana-like, so Pauli Jinit = 0

e+ e−
χ χ

This process is highly suppressed
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• Next best hope: χχ W+W−, ZZ e+…

• Problem: conventional wisdom in simple 
models, χ ≈ Bino, does not couple to SU(2) gauge 
bosons

We are left with soft e+: χχ bb ce+ν…
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Photons
Urban et al. (1992)

Berezinsky, Gurevich, Zybin (1992)

• χ ≈ Bino also suppresses the photon signal

• Best hope: χχ γγ – highly suppressed

• Next best hope: χχ W+W−, ZZ γ... – also 
suppressed

[Both e+ and γ signals are sensitive to cuspiness, 
clumpiness in the halo.]
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Example: Minimal Supergravity

Relic density regions and Bino-ness (%)

• But not always!  
χ = Bino-Higgsino mixture in 

“focus point region” Feng, Matchev, Wilczek (2000)

• A simple model 
incorporating unification

χ ≈ Bino in the 
0.1 < ΩDM < 0.3 region 
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SUSY WIMP Detection

Recent data:
• mh > 115 GeV
• B(b sγ) ~ SM
• (g−2)µ ~ SM (maybe)
• ΩDM low (red region)

Synergy:
Particle probes
Dark matter detection

Conclusion: indirect 
detection favored

(valid beyond mSUGRA)
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Extra Dimensional Dark Matter

• Extra dimensions generically 
predict Kaluza-Klein particles with 
mass n/R.  What are they good 
for?

• If R ~ TeV-1, the lightest KK particle 
may be a WIMP

• Consider B1, the first partner of the 
hypercharge gauge boson
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Positrons
• Recall in SUSY:

χχ e+e−

suppressed by 
angular momentum

• But B1 has spin 1

• B1B1 e+e− is 
large, ~20% of all 
annihilations

Moskalenko, Strong (1999)

• Here fi(E0) ~ δ(E0−mB1). Is 
the peak is erased by 
propagation?
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Positrons from KK Dark Matter
Cheng, Feng, Matchev (2002)

Precision data dark matter discovery and mass measurement
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SuperWIMP Dark Matter 

• Both SUSY and extra dimensions predict partner 
particles for all known particles.  What about the 
gravitino G̃ or the 1st graviton excitation G1?

• G̃ and G1 interact only gravitationally, but that’s 
sufficient for dark matter

• Consider G̃; the G1 case is identical up to O(1) 
factors
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Gravitinos from Late Decay
• Assume gravitinos are diluted by inflation, and the universe 

reheats to low temperature.

• G̃ LSP

• Qualitatively new cosmology

• G̃ not LSP

• No impact – implicit 
assumption of most of 
literature

SM

LSP
G̃

SM

NLSP

G̃
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Gravitinos from Late Decay
• Early universe behaves as 

usual, WIMP freezes out with 
desired thermal relic density

• A year passes…then all 
WIMPs decay to gravitinos

WIMP≈
G̃

Gravitinos naturally inherit WIMP density,
but are superweakly-interacting – “superWIMPs”

MPl
2/MW

3 ~ year
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SuperWIMP Detection
msWIMP = 0.1, 0.3, 1 TeV (from below)

• SuperWIMPs evade all 
conventional dark 
matter searches

• The only possible 
signal: WIMP 
superWIMP decays in 
the early universe

• Decay time is sensitive 
to 
∆m = mWIMP – msWIMP

gravitino graviton

Feng, Rajaraman, Takayama (2003)
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Gravitino Cosmology: Detection
• For ∆m ~ O(100 GeV), WIMP superWIMP decays 

occur before CMB and after BBN.  This can be tested.

Baryometry

WMAP

ηD = ηCMB

[7Li low]

Fields, Sarkar, PDG (2002) Cyburt, Fields, Olive (2003)
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G̃ Signals: BBN
• Signals are determined by 

WIMP: e.g., B ̃→ G̃ γ,…

• mWIMP , mG ̃ determine
Decay time: τX

Energy release: ζEM = ∆m nG̃ / nγ

(ΩG̃ = ΩDM)

• Large energy release destroys 
successes of BBN

• But G̃ DM is allowed and low 
7Li may even be superWIMP
signal

Cyburt, Ellis, Fields, Olive (2002)

Feng, Rajaraman, Takayama (2003)
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G̃ Signals: CMB
• Late decays may also distort 

the CMB spectrum

• For 105 s < τ < 107 s, get
“µ distortions”:

µ=0: Planckian spectrum
µ≠0: Bose-Einstein spectrum

• Current bound: |µ| < 9 x 10-5

Future (DIMES): |µ| ~ 2 x 10-6
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G ̃ Signals: Diffuse Photon Flux
• For small ∆m, decays may 

be very late 

• Photons produced at later 
times have smaller initial

Eγ ~ ∆m

but also redshift less; in 
the end, they are harder

• SuperWIMPs may 
produce excesses in keV-
MeV photon spectrum 
(INTEGRAL)

mSWIMP = 1 TeV

∆m = 
1 GeV

∆m = 10 GeV

HEAO
OSSE

COMPTEL

Feng, Rajaraman, Takayama (2003)
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Summary and Outlook

• New dark matter possibilities (all satisfying 
the selection rule):
– Bino-Higgsino dark matter
– Kaluza-Klein dark matter
– superWIMP dark matter

• New theoretical possibilities new signals 
for dark matter in space
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What’s in our Future?
Collider Inputs

Weak-scale Parameters

χχ Annihilation χN Interaction

Relic Density        Indirect Detection Direct Detection

Astrophysical and Cosmological Inputs
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