

FIRST FASER PHYSICS RESULTS AND THE FORWARD PHYSICS FACILITY

Jonathan Feng, UC Irvine

on behalf of the FASER Collaboration and the FPF Working Groups

Aspen Winter Conference, 27 March 2023

LOOKING FORWARD

- In the last few years, we've increasingly realized that LHC detectors are beautifully optimized to discover heavy particles, but not light particles.
 De Rujula, Ruckl (1984)
- Heavy particles are produced at low velocity and then decay roughly isotropically to other particles.

- But high-energy light particles are dominantly produced in the forward direction, escape through un-instrumented regions of existing detectors.
 - The existing large detectors are blind to neutrinos.
 - They are also blind to many other new physics possibilities: dark photons, dark Higgs bosons, sterile neutrinos, ALPs, millicharged particles, new force carriers, dark matter, dark sectors, LLPs, FIPs,... (see PBC benchmarks).

THE FAR-FORWARD REGION

FASER PROGRESS 2019-21

27 Mar 2023

FASER NOW

0

THE FASER DETECTOR

• Small, fast, inexpensive

FASER Collaboration (2207.11427)

Front Scintillator

- 10 cm radius, 7 m long
- Constructed with essential help from ATLAS SCT, LHCb
- Designed to differentiate signals from incoming muons

FIRST PHYSICS RESULTS FROM FASER

24 Mar 2023

[hep-ex]

arXiv:2303.14185v1

CERN-EP-2023-056

• With 2022 Run 3 data

- First direct observation of collider neutrinos
 (2303.14185, last night!)
- New dark photon limits in the thermal relic region
- See full talks at other winter conferences
 - Brian Petersen, Moriond EW, 19 March 2023
 - Carl Gwilliam, Moriond QCD, 29 March 2023
 - Dave Casper, UCLA DM, 30 March 2023

First Direct Observation of Collider Neutrinos with FASER at the LHC

FASER Collaboration

Henso Abreu^{0,1} John Anders^{0,2} Claire Antel^{0,3} Akitaka Ariga^{0,4,5} Tomoko Ariga^{0,6} Jeremy Atkinson^{0,4} Florian U. Bernlochner, ⁷ Tobias Blesgen⁷ Tobias Boeckh⁷ Jamie Boyd⁹ Lydia Brenner⁸ Franck Cadoux,³ David W. Casper⁰,⁹ Charlotte Cavanagh⁰,¹⁰ Xin Chen⁰,¹¹ Andrea Coccaro⁰,¹² Ansh Desai⁰,¹³ Sergey Dmitrievsky⁰¹⁴ Monica D'Onofrio¹⁰ Yannick Favre,³ Deion Fellers¹³ Jonathan L. Feng⁰⁹ Carlo Alberto Fenoglio³ Didier Ferrere³ Stephen Gibson¹⁵ Sergio Gonzalez-Sevilla³ Yuri Gornushkin¹⁴ Carl Gwilliam¹⁰ Daiki Hayakawa⁵ Shih-Chieh Hsu¹⁶ Zhen Hu⁵¹¹ Giuseppe Iacobucci⁵ Tomohiro Inada¹¹ Sune Jakobsen^{2,2} Hans Joos^{2,17} Enrique Kajomovitz¹ Hiroaki Kawahara^{6,6} Alex Keyken,¹⁵ Felix Kling⁶¹⁸ Daniela Köck⁶¹³ Umut Kose⁶² Rafaella Kotitsa⁶² Susanne Kuehn⁶² Helena Lefebvre⁶¹⁵ Lorne Levinson⁶¹⁹ Ke Li⁶¹⁶ Jinfeng Liu,¹¹ Jack MacDonald⁶²⁰ Chiara Magliocca⁶³ Fulvio Martinelli⁶³ Josh McFayden⁶²¹ Matteo Milanesio⁷³ Dimitar Mladenov⁶² Théo Moretti⁶³ Magdalena Munker⁶³ Mitsuhiro Nakamura,²² Toshiyuki Nakano,²² Marzio Nessi ,^{3,2} Friedemann Neuhaus,²⁰ Laurie Nevay,^{2,15} Hidetoshi Otono⁶ Hao Pang¹¹ Lorenzo Paolozzi^{3,2} Brian Petersen² Francesco Pietropaolo,² Markus $\begin{array}{c} \operatorname{Prim}{\textcircled{\scriptsize 0}}^7 \operatorname{Michaela} \operatorname{Queitsch-Maitland}{\textcircled{\scriptsize 0}}^{23} \operatorname{Filippo} \operatorname{Resnati}{\textcircled{\scriptsize 0}}^2 \operatorname{Hiroki} \operatorname{Rokujo}^{22} \operatorname{Elisa} \operatorname{Ruiz-Choliz}{\textcircled{\scriptsize 0}}^{20} \operatorname{Jorge} \\ \operatorname{Sabater-Iglesias}{\textcircled{\scriptsize 0}}^3 \operatorname{Osamu} \operatorname{Sato}{\textcircled{\scriptsize 0}}^{22} \operatorname{Paola} \operatorname{Scampoli}{\textcircled{\scriptsize 0}}^{4,24} \operatorname{Kristof} \operatorname{Schmieden}{\textcircled{\scriptsize 0}}^{20} \operatorname{Matthias} \operatorname{Schut}{\textcircled{\scriptsize 0}}^{20} \operatorname{Anna} \end{array}$ Sfyrla⁰,³ Savannah Shively⁰,⁹ Yosuke Takubo^{2,5} Noshin Tarannum⁰,³ Ondrej Theiner⁰,³ Eric Torrence⁰,¹³ Serhan Tufanli,² Svetlana Vasina,¹⁴ Benedikt Vormwald,² Di Wang,¹¹ Eli Welch,⁹ and Stefano Zambito,⁹ ¹Department of Physics and Astronomy, Technion—Israel Institute of Technology, Haifa 32000, Israel ²CERN, CH-1211 Geneva 23, Switzerland ³Département de Physique Nucléaire et Corpusculaire, University of Geneva, CH-1211 Geneva 4, Switzerland ⁴Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland ⁵Department of Physics, Chiba University, 1-33 Yayoi-cho Inage-ku, 263-8522 Chiba, Japan ⁶Kyushu University, Nishi-ku, 819-0395 Fukuoka, Japan ⁷ Universität Bonn, Regina-Pacis-Weg 3, D-53113 Bonn, Germany ⁸Nikhef National Institute for Subatomic Physics. Science Park 105, 1098 XG Amsterdam, Netherlands ⁹Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA University of Liverpool, Liverpool L69 3BX, United Kingdom ¹¹Department of Physics, Tsinghua University, Beijing, China ¹²INFN Sezione di Genova, Via Dodecaneso, 33-16146, Genova, Italy ¹³University of Oregon, Eugene, OR 97403, USA ¹⁴Affiliated with an international laboratory covered by a cooperation agreement with CERN. ¹⁵Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom ¹⁶Department of Physics, University of Washington, PO Box 351560, Seattle, WA 98195-1460, USA ⁷II. Physikalisches Institut, Universität Göttingen, Göttingen, Germany ¹⁸Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ⁹Department of Particle Physics and Astrophysics. Weizmann Institute of Science, Rehovot 76100, Israel ²⁰Institut f
ür Physik, Universit
ät Mainz, Mainz, Germany ²¹Department of Physics & Astronomy, University of Sussex, Sussex House, Falmer, Brighton, BN1 9RH, United Kingdom ²²Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ³University of Manchester, School of Physics and Astronomy, Schuster Building, Oxford Rd, Manchester M13 9PL, United Kingdom ²⁴Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy ²⁵Institute of Particle and Nuclear Studies, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan (Dated: March 24, 2023)

FASER OPERATIONS

- Successfully operated throughout 2022
 - Continuous data taking
 - Largely automated
 - Up to 1.3 kHz
 - 350M single muons recorded
- Recorded 96.1% of delivered lumi.
 - DAQ dead-time of 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchanged twice
 - Needed to manage occupancy
 - First box only partially filled
- Calorimeter gain optimised for:
 - Low E (< 300 GeV) before 2nd exchange
 - High E (up to 3 TeV) after 2nd exchange

Analyses presented use 27.0 fb⁻¹ or 35.4 fb⁻¹

COLLIDER NEUTRINO SEARCH

- Signal: ~TeV neutrinos produced in meson decays, interact in FASERv. Focus on CC interactions $v_{\mu}N \rightarrow \mu X$, producing a high-energy muon.
- Aim for observation, currently not trying to measure cross section. Use electronic components only, FASER_V only as a 1.1 ton target.

Collider neutrino selection

FASER Collaboration (2303.14185)

- Collision event with good data quality
- No signal (< 40 pC) in front veto station
- Signal (> 40 pC) in other 3 scintillator stations
- Timing and preshower consistent with \geq 1 MIP
- Exactly 1 good fiducial track (r < 95 mm, p > 100 GeV and θ < 25 mrad, extrapolating to r < 120 mm in front veto station)
- Expect 151 ± 41 events from GENIE simulation, uncertainty from forward hadron production, spans DPMJET vs. SIBYLL range

COLLIDER NEUTRINO BACKGROUNDS

- Neutral hadrons estimated from simulation
 - Expect ~300 neutral hadrons with E > 100 GeV reaching FASER_ν, most accompanied by μ, but conservatively assume missed
 - Estimate fraction of these passing event selection, most are absorbed in tungsten with no high-momentum track
 - Predict N = 0.11 \pm 0.06 events
- Scattered muons estimated from data sideband
 - Take events w/o front veto radius requirement and single track segment in first tracker station with 90 < r < 95 mm, extrapolate to higher momentum
 - Scale by number of events with front veto cut, use MC to extrapolate to signal region
 - Predict N = 0.08 ± 1.83 events
- Veto inefficiency estimated from final fit

Scintillator eff. > 99.999%, bkgrd is negligible
 27 Mar 2023

COLLIDER NEUTRINO RESULTS

- After unblinding, find 153 signal events with no veto signal
 - Just 10 events with one veto signal
- 1st direct observation of collider neutrinos
 - Signal significance of ~16σ
 - Muon charge \rightarrow both ν and $\bar{\nu}$
 - Almost certainly these include the highest energy v and \bar{v} from a human source

27 Mar 2023

FASER Collaboration (2303.14185

NEUTRINOS FROM EMULSION IN FASER $\boldsymbol{\nu}$

Much more to come: this analysis does not even use the emulsion data! Analysis underway, but already many neutrino candidates, including this highly v_e -like (and very high energy) CC event

DARK PHOTON SEARCH

• Signal: $\pi/\eta \rightarrow A'\gamma$ or $pp \rightarrow ppA'$, A' travels 476 m through rock/concrete, then decays $A' \rightarrow e^+e^-$. Probes thermal target: m ~ 10 – 100 MeV, $\varepsilon \sim 10^{-5} - 10^{-4}$.

- Dark photon selection: simple and robust, optimized for discovery
 - Collision event with good data quality
 - No signal (< 40 pC) in any veto scintillator
 - Timing and preshower consistent with > 2 MIPs
 - Exactly 2 good fiducial tracks (p > 20 GeV and r < 95 mm, extrapolating to r
 95 mm at vetos)
 - Calorimeter energy > 500 GeV
- Blinded events with no veto signal and calorimeter energy > 100 GeV
- Signal efficiency was $\approx 40\%$ across entire parameter space of sensitivity

DARK PHOTON BACKGROUNDS

- Veto inefficiency
 - Measured layer by layer with muons, completely negligible: $10^8(10^{-5})^4 \sim 10^{-12}$
- Non-collision backgrounds
 - Cosmics measured in runs with no beams, nearby beam debris measured in runs with non-colliding bunches, all negligible
- Neutral hadrons, e.g., *K_s*, from muons interacting in rock in front of FASER
 - Heavily suppressed since muons typically trigger veto, hadrons have to pass through FASERv and still leave E>500 GeV in calo
- Neutrino interactions
 - Estimated from GENIE simulation with 300 ab⁻¹, uncertainties from v flux
 - Dominant background: N = $(1.8 \pm 2.4) \times 10^{-3}$

DARK PHOTON RESULTS

- After unblinding, no events seen in signal region, FASER sets limits on previously unexplored parameter space.
- First incursion (along with NA62, announced at La Thuile) into the thermal relic region from low coupling since the 1990's.
- Background-free analysis bodes well for future sensitivity. Expect factor of ~10 more luminosity in Run 3 from 2022-25.

FORWARD PHYSICS FACILITY

The rich physics program in the far-forward region strongly motivates creating a dedicated Forward Physics Facility to house far-forward experiments for the HL-LHC era from 2028-2040s.

ATLAS

UJ18

SPS

LHC

FASER

FPF EXPERIMENTS

 At present there are 5 experiments being designed to explore the breadth of SM and BSM topics. FPF covers η > 5.5, experiments on LOS cover η ≥ 7.

- Large far-forward fluxes are automatically provided by the LHC and can be exploited with small and inexpensive detectors. For example,
 - ~10⁶ TeV-neutrino interactions per 10 tons.
 - ~10⁴ dark photon decays can be observed in currently viable regions of param space.

THE FPF NEUTRINO PROGRAM

E53

E53

- The FPF experiments will see $10^5 v_e$, $10^6 v_{\mu}$, and $10^4 v_{\tau}$ interactions at ~ TeV energies where there is currently no data.
- Neutrinos are produced by forward hadron production: π, K, D, Energy spectra will inform
 - Astroparticle physics: muon puzzle, ...
 - QCD: pdfs at $x \sim 10^{-1}$, $x \sim 10^{-7}$, intrinsic charm, small-x gluon saturation, ...
 - Neutrino properties: v_s w/ $\Delta m^2 \sim 10^3 \text{ eV}^2$
- Fully differential neutrino DIS scattering cross sections will improve constraints on pdfs by up to a factor of ~2.
- What else?

FORWARD PHYSICS FACILITY

- The physics program in the far-forward region has been developed in a series of meetings and papers.
- FPF Meetings
 - FPF Kickoff Meeting, 9-10 Nov 2020
 - <u>FPF2 Meeting</u>, 27-28 May 2021
 - <u>FPF3 Meeting</u>, 25-26 Oct 2021
 - <u>FPF4 Meeting</u>, 31 Jan-1 Feb 2022
 - <u>FPF5 Meeting</u>, 15-16 Nov 2022
- FPF Papers
 - FPF "Short" Paper: 75 pages, 80 authors, Phys. Rept. 968, 1 (2022), <u>2109.10905</u>.
 - FPF White Paper: 429 pages, 392 authors+endorsers representing over 200 institutions, J. Phys. G (2022), <u>2203.05090</u>.

 Snowmass 2022: "Our highest immediate priority accelerator and project is the HL-LHC, ... including the construction of auxiliary experiments that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades."

SUMMARY

- FASER successfully took data in 1st year of Run 3
 - Running with fully functional detector and very good efficiency
- First direct observation of collider neutrinos
 - ~153 events with ~0 background, 16 sigma
 - Opens a new field: neutrino physics at the LHC
- Excluded A' in region of 10-100 MeV mass and really small coupling
 - First incursion into the thermal relic region from low coupling in 30 years
- More neutrino studies and BSM searches to come
 - Including first results from emulsion detector
 - Searches for ALPs, light gauge bosons, ...
- Strongly motivates FPF for the HL-LHC era

ACKNOWLEDGEMENTS

We also thank

- The LHC for excellent performance in 2022
- ATLAS for luminosity information
- ATLAS for use of ATHENA s/w framework
- ATLAS SCT for spare tracker modules
- LHCb for spare ECLA modules
- CERN FLUKA team for bkgrd simulations
- CERN PBC and technical infrastructure groups for excellent support during FASER's design, construction, installation

