

MOTIVATIONS AND SIGNALS

1st FASER Collaboration Meeting, CERN Jonathan Feng, UC Irvine 1 April 2019

PHYSICS SESSION

OUTLINE

Motivations

Particle Physics

Cosmology

Signals

Concrete Models

Dark Photons

Dark Higgs Bosons

Axion-Like Particles

MOTIVATIONS: PARTICLE PHYSICS

NEW PHYSICS SEARCHES AT THE LHC

- The traditional targets are heavy, strongly interacting particles
 - σ ~ fb to pb → N_{Run3} ~ 10²–10⁵, produced ~isotropically → high p_T
- However, if new particles are light and weakly interacting, this may be completely misguided
 - − Light → they may be produced in π , K, D, B decays...
 - Weakly-interacting \rightarrow ...but extremely rarely in π , K, D, B decays
- More promising to look where most of the pions (and other mesons) are: along the beamline at low p_T
 - σ_{inel} ~ 100 mb → N_{Run3} ~ 10¹⁶, and 10% of the pions are produced within 2 mrad of the beamline (η > 7)

THE IDEA

- Of course, we can't put a reasonably-sized detector on the beamline near the IP – it would block the proton beams
- However, weakly-interacting particles are also typically longlived, so we can place the detector O(100) m away, after the beam curves away

(100 m) (mrad) = 10 cm → partiçles are still highly collimated

 These general considerations motivate a small, fast, inexpensive experiment placed in the very forward region of ATLAS/CMS, a few 100m downstream: FASER, the Forward Search Experiment at the LHC.

FASER LOCATION

FASER LOCATION

MOTIVATIONS: COSMOLOGY

- Thermal freezeout is a simple mechanism for generating dark matter in the early universe
- The WIMP Miracle: 100 GeV TeV mass particles with weak interaction couplings to the SM freezeout with the right thermal relic density

 The WIMPless Miracle: lighter particles with even weaker interactions with the SM can also freezeout with the right thermal relic density, providing a cosmological motivation that enhances the particle physics motivation

DARK MATTER

 There are even tentative indications that there is a new "mediator" particle with mass 10 – 100 MeV that mediates large DM-DM self-interactions

Such scenarios predict a 10-100 MeV weakly-interacting particle

SIGNALS: CONCRETE MODELS

- We want to determine signals, FASER's potential in concrete models. Seems like a Pandora's box of possibilities.
- But suppose there is a dark sector with its own U(1)_{EM}. There are infinitely many possible SM-dark sector interactions, but only one is induced by arbitrarily heavy mediators:

- It is "most likely" because it is non-decoupling. Cf. $\frac{F_{\mu\nu}F_D^{\nu\alpha}F_\alpha^\mu}{M^2}$
- It is also naturally small, since it is induced by a loop.

Okun (1982), Galison, Manohar (1984), Holdom (1986)

DARK PHOTON, DARK HIGGS, STERILE NUS

 This provides an organizing principle that motivates specific examples of new, weakly interacting light particles. There are just a few options:

- Spin 1 SM ----
$$F_{\mu\nu}F_D^{\mu\nu}$$
---- Dark Force

 \rightarrow dark photon, couples to SM fermions with suppressed couplings proportional to charge: ϵq_f .

• Spin 0 SM ---
$$h^\dagger h \phi_D^\dagger \phi_D$$
---- Dark Scalar

 \rightarrow dark Higgs boson, couples to SM fermions with suppressed coupling proportional to mass: $\sin \theta m_f$.

• Spin 1/2 SM
$$----hL\psi_{D^{----}}$$
 Dark Fermion

 \rightarrow Heavy neutral lepton, mixes with SM vs with suppressed mixing sin θ .

SIGNALS: DARK PHOTONS

• Consider some "typical" parameters: $m_{A'} = 100$ MeV, $\epsilon = 10^{-5}$.

 Production: for example, pion decay:

Branching ratio
 suppressed by ε² = 10⁻¹⁰.
 Need lots of pions!

Decay

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon} \right]^2 \left[\frac{E_{A'}}{\text{TeV}} \right] \left[\frac{100 \text{ MeV}}{m_{A'}} \right]^2$$

Decay lengths of ~100 m

SIGNALS: DARK PHOTONS

- Simulations greatly refined by LHC data
 - Production is peaked at $p_T \sim \Lambda_{QCD} \sim 250 \text{ MeV}$
 - Rates highly suppressed •
 by ε² ~ 10⁻¹⁰

Production is peaked at

 $p_T \sim \Lambda_{QCD} \sim 250 \text{ MeV}$

Only highly boosted ~TeV A's decay in FASER

- Enormous event rates: $N_{\pi} \sim 10^{15}$ per bin
- But still N_A ~ 10⁵ per bin
- Rates again suppressed by decay requirement
- But still N_{A'} ~ 100 e⁺e⁻ signal events, most within 20 cm of "on axis"

DARK PHOTON SENSITIVITY REACH

- FASER 1: R=10cm, L=1.5 m, Run 3; FASER 2: R=1m, L=5m, HL-LHC
- For low ε, FASER is not competitive with SHiP.
- For high ε, FASER may have world-leading sensitivity.
- Discovery contours assume no background. But note: signal contours are very closely spaced: ~50% signal efficiency, N=3 vs.10, e⁺e⁻ vs. e⁺e⁻ + μ⁺μ⁻, L=3m vs. 5m, ... each lead to nearly imperceptible shifts in reach.

THE DARK PHOTON SIGNAL

- No signal in the veto scintillator
- 2 high-energy, oppositely charged tracks consistent with originating from a common vertex in the decay volume and with a combined momentum pointing back to the IP
- For e⁺e⁻ signature, also get a large EM deposit in the calorimeter
- Magnets are needed to separate the 2 charged tracks sufficiently to resolve them in the tracker

$$h_B \approx \frac{ec\ell^2}{E}B = 3 \text{ mm} \left[\frac{1 \text{ TeV}}{E}\right] \left[\frac{\ell}{10 \text{ m}}\right]^2 \left[\frac{B}{0.1 \text{ T}}\right]$$

SIGNALS: DARK HIGGS BOSONS

SINGLE PRODUCTION

- Dark Higgs produced in B decays. $N_B/N_\pi \sim 10^{-2}$ at FASER ($N_B/N_\pi \sim 10^{-7}$ at beam dumps)
- Signal is μ⁺μ⁻, π⁺π⁻, K⁺K⁻
- Probes h- ϕ mixing, reach is complementary to other experiments

DOUBLE PRODUCTION

- Probes $h\phi\phi$ trilinear coupling
- Complementary to probes of exotic Higgs decays h→ φφ
- FASER probes SM Higgs properties!

SIGNALS: ALPS COUPLED TO PHOTONS

- ~TeV photon from IP collides with TA(X)N, creates
 ALP through Primakoff process and a → γγ in
 FASER. "light shining through (100 m) wall expt"
- Signal is 2 photons separated by 0.1 few mm.
 Distinguishing 2 photons is very challenging, but already some FASER upgrades proposed

PHYSICS SUMMARY

 FASER has a full physics program: can discover all candidates with renormalizable couplings (dark photon, dark Higgs, HNL); ALPs with all types of couplings (γ, f, g); and many other examples; see FASER's Physics Reach for LLPs, 1811.12522.

Benchmark Model	FASER	FASER 2	References
V1/BC1: Dark Photon	$\sqrt{}$	$\sqrt{}$	Feng, Galon, Kling, Trojanowski, 1708.09389
V2/BC1': U(1) _{B-L} Gauge Boson	$\sqrt{}$	$\sqrt{}$	Bauer, Foldenauer, Jaeckel, 1803.05466 FASER Collaboration, 1811.12522
BC2: Invisible Dark Photon	-	-	_
BC3: Milli-Charged Particle	-	-	_
S1/BC4: Dark Higgs Boson	-	$\sqrt{}$	Feng, Galon, Kling, Trojanowski, 1710.09387 Batell, Freitas, Ismail, McKeen, 1712.10022
S2/BC5: Dark Higgs with hSS	-	$\sqrt{}$	Feng, Galon, Kling, Trojanowski, 1710.09387
F1/BC6: HNL with e	-	$\sqrt{}$	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
F2/BC7: HNL with μ	-	$\sqrt{}$	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
F3/BC8: HNL with τ	$\sqrt{}$	$\sqrt{}$	Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212
A1/BC9: ALP with photon	$\sqrt{}$	$\sqrt{}$	Feng, Galon, Kling, Trojanowski, 1806.02348
A2/BC10: ALP with fermion	$\sqrt{}$	$\sqrt{}$	FASER Collaboration, 1811.12522
A3/BC11: ALP with gluon	$\sqrt{}$	$\sqrt{}$	FASER Collaboration, 1811.12522

COMPLEMENTARY PROPOSED EXPERIMENTS

~1000 m³, ~100M CHF + beam

Alekhin et al. (2015)

~800,000 m³ ~ 1 IKEA, ~\$50M Chou, Curtin, Lubatti (2016)

DELPHI CODEX-b box

OR SCHEMEN SECS

OR SC STRINGS

Shield veto

Ph shield

~1000 m³ ~ 1 mIKEAs

Gligorov, Knapen, Papucci, Robinson (2017)

Feng, Galon, Kling, Trojanowski (2017)

SUMMARY AND SEARCH PROSPECTS

- FASER is an opportunity for a small and inexpensive experiment to search for light and weakly-interacting particles, complementing other experiments and extending the discovery prospects of the LHC.
- Discovery prospects for LLPs

Install FASER in LS2 (2019-20) for Run 3 (2021-23, 150 fb⁻¹)

- Decay volume: R = 10 cm, L = 1.5 m.
- Discovery prospects for dark photons, B-L gauge bosons, ALPs, etc.

After successful operation of FASER, FASER 2 could be installed in LS3 (2023-25) for HL-LHC (2026-35, 3 ab⁻¹)

- Decay volume: R = 1 m, L = 5 m. Requires extension of existing tunnel (widening of UJ12 or UJ18 areas).
- Full physics program: dark photons, B-L, ALPs, dark Higgs, HNLs, etc.

 Also interesting prospects for detecting the first LHC neutrinos, measuring their properties.