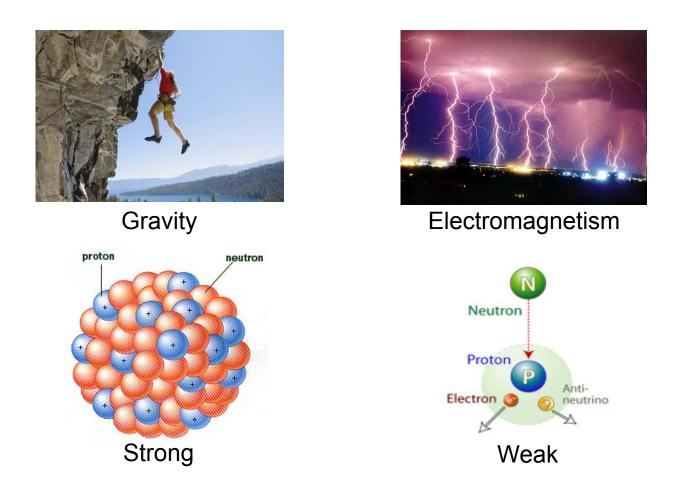
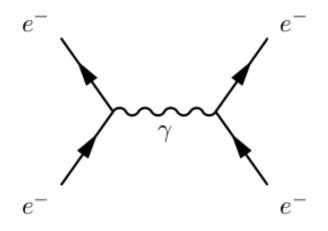
DARK MATTER AND THE SEARCH FOR A FIFTH FORCE


Vanderbilt Colloquium

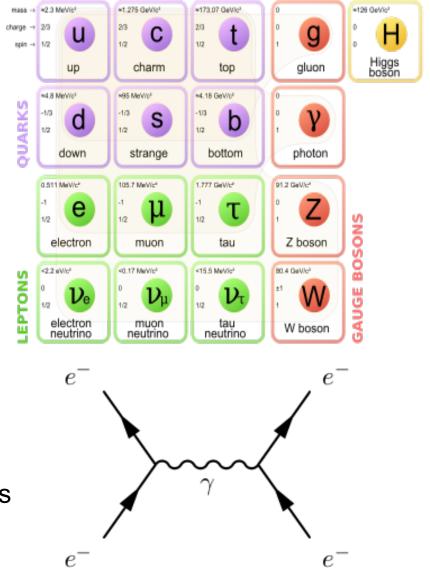
Jonathan Feng, UC Irvine

13 April 2017

FUNDAMENTAL FORCES


• We know of four fundamental forces

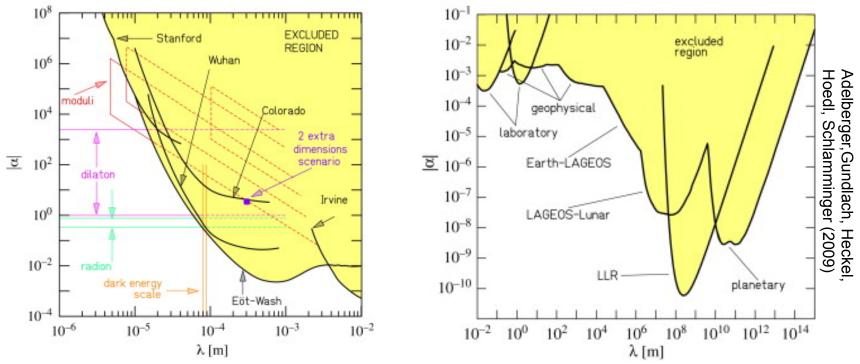
• Are there more? Is there a fifth fundamental force?


WHAT IS A FUNDAMENTAL FORCE?

- There are many kinds of forces: gravitational forces, contact forces, friction forces, tension forces, Coulomb forces, magnetic forces...
- How do we decide which of these are fundamental?
- At the most basic level, forces are mediated by the exchange of particles
- Fundamental forces are, then, those mediated by the exchange of fundamental particles

FORCES AND PARTICLES

- The known particles can be divided into 2 groups
 - Bosons (integer spin)
 - Fermions (half-integer spin)
- Lorentz invariance implies that all interactions involve an even number of fermions
- Particles can therefore emit a boson, but not a fermion
- We therefore identify
 - Bosons = force-mediating particles
 - Fermions = matter particles

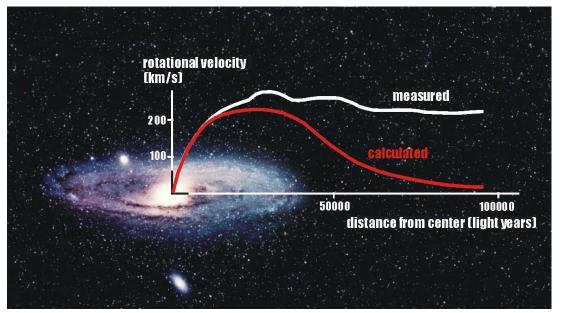


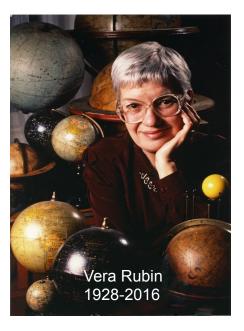
FORCES AND BOSONS

- At present the known fundamental bosons are Photons (electromagnetism) Gluons (strong force) Gravitons (gravity) W and Z bosons (weak force) Higgs boson (Higgs force) [probably fundamental]
- Discovering a 5th (or 6th) fundamental force means discovering a new fundamental boson. Many proposed: dilatons, radions, Z' gauge bosons, A' dark photons, Kaluza-Klein gravitons, ...
- The particle's mass determines the force's range and potential: $\lambda \sim m^{-1} V(r) \sim \frac{1}{r} e^{-r/\lambda}$
- "Force" language is most natural when m is small, λ is large
 - If m ~ TeV, λ ~ 2 x 10⁻¹⁹ m, this looks like a new particle
 - If m ~ MeV, λ ~ 200 fm, this looks like a new force

PAST 5TH FORCE SEARCHES

• There have been many searches for 5th forces; for example, deviations from gravity: $V(r) = -G_{\infty} \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$

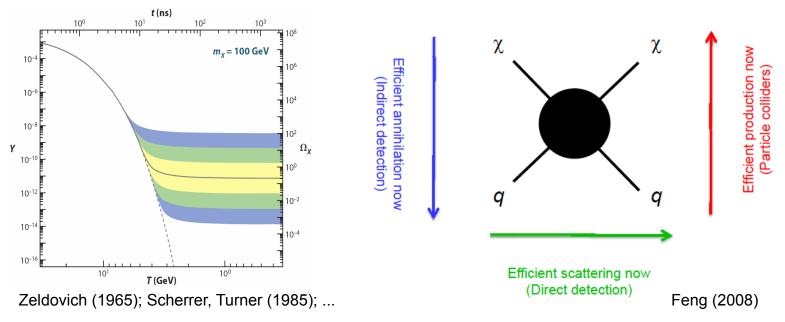



 So far, no such deviations have been found, but the history of 5th force searches is fascinating

See, e.g., Fischbach, "The 5th Force: A Personal History" (2015)

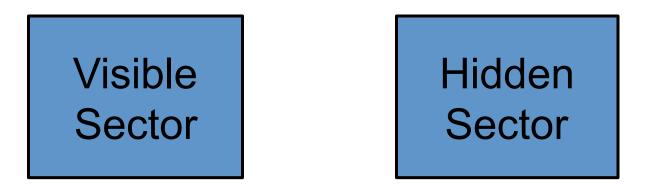
DARK MATTER

- There is now every indication that the universe includes 6 times as much dark matter as ordinary matter
- Classic evidence: rotation curves



 This evidence has now been supplemented by many other observations, all pointing to the same amount of dark matter

CLASSIC DARK MATTER CANDIDATES


- There are classic, well-motivated candidates: axions, sterile neutrinos, and weakly-interacting massive particles (WIMPs)
- E.g., WIMPs, particles interacting through the weak force, naturally have the right relic density, can be discovered at colliders and through direct and indirect detection

• So far none of them has been found

DARK SECTORS

• All evidence for dark matter is gravitational. Perhaps it's in a hidden sector, composed of particles with almost no electromagnetic, strong, or weak interactions

 A hidden sector with dark matter in it is a "dark sector," and it may have a rich structure with matter and forces of its own

> Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982); Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); Pospelov, Ritz, Voloshin (2007); Feng, Kumar (2008);...

DARK MATTER PORTALS

- If we are to detect it, we need to know the hidden sector's leading, even if weak, interactions with us
- Seemingly a Pandora's box of possibilities, but effective operators provide an organizing principle:

$$\mathcal{L} = \mathcal{O}_4 + \frac{1}{M}\mathcal{O}_5 + \frac{1}{M^2}\mathcal{O}_6 + \dots$$

where the operators are grouped by their mass dimension, with [scalar] = 1, [fermion] = 3/2, $[F_{\mu\nu}] = 2$

• *M* is a (presumably) large "mediator mass," so start with dimension 4 operators. Some of the few possibilities:

$$h^\dagger h \phi_h^\dagger \phi_h$$

$$F_{\mu
u}F_h^{\mu
u}$$

Neutrino portal

hLN

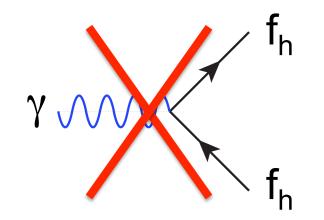
Higgs portal

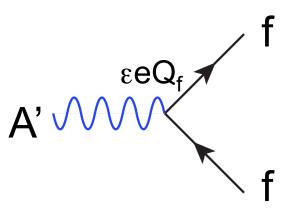
Vector portal

VECTOR PORTAL

Holdom (1986)

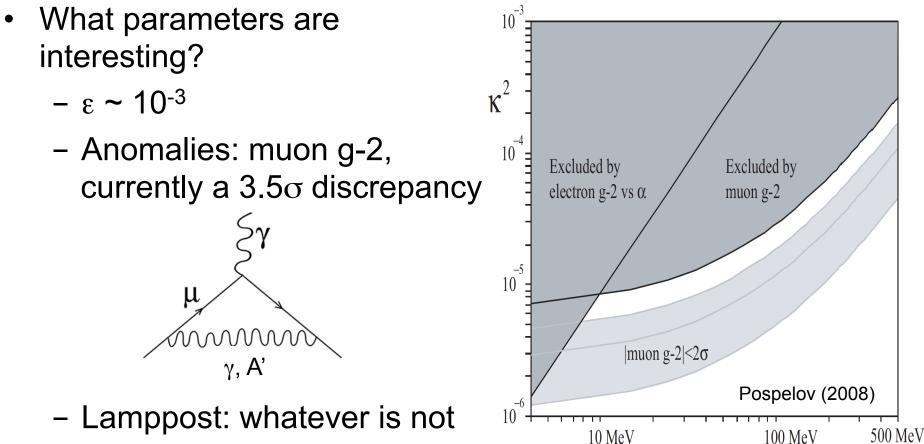
 Suppose there are mediator particles with both hidden sector and visible sector charges. These will induce a coupling between the visible and hidden gauge fields:




- One might expect this effect to become very small for heavy mediator particles, but it doesn't
- Instead, one gets a vector portal term $\epsilon F_{\mu\nu}F_h^{\mu\nu}$, with $\epsilon \sim 10^{-3} \text{ e e}_h$, where the 10⁻³ comes from it being a 1-loop effect, and e and e_h are the visible and hidden sector charges ^{13 Apr 2017}

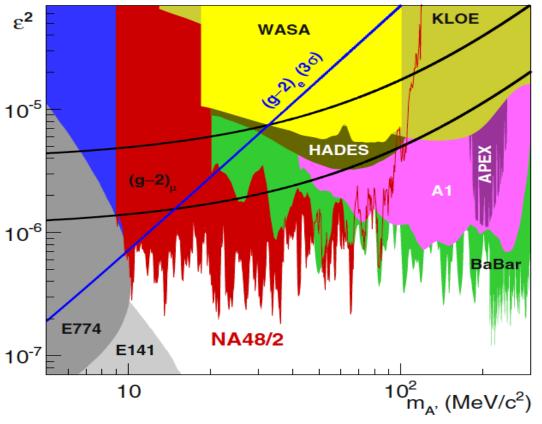
DARK PHOTONS

Holdom (1986)


- The operator $\epsilon F_{\mu\nu}F_h^{\mu\nu}$ mixes the visible and hidden force carriers. Diagonalizing to eliminate this mixing term, one finds that the physical states are
 - a massless force carrier: the SM photon γ
 - a massive force carrier: the "dark photon" A'
- The SM photon doesn't couple to hidden sector particles, but the dark photon couples with charge εeQ_f to visible sector particles: it mediates a 5th force!

DARK PHOTON SEARCHES

 This has motivated a world-wide hunt for dark photons throughout the (mass, coupling) parameter space



excluded and within reach

 \mathbf{m}_{V}

CURRENT CONSTRAINTS

In just 8 years, a large number of analyses have started constraining the parameter space by analyzing archived and current data and by doing new experiments

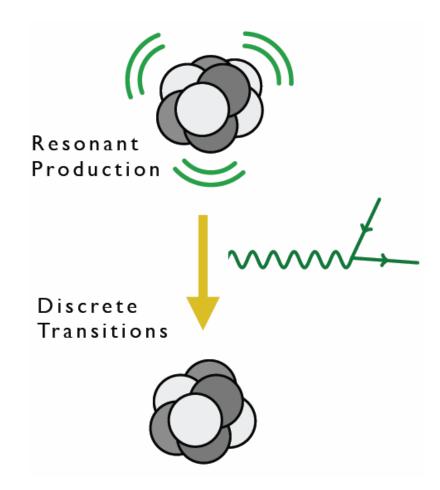
 The dark photon resolution to the muon g-2 anomaly is now disfavored, but there is still a lot of parameter space to explore and many proposed experiments

FIFTH FORCE IN NUCLEAR PHYSICS

- The interest in dark matter and 5th forces at low energy scales opens up new connections to other branches of physics
- In particular, for the MeV scale, nuclear physics becomes a relevant probe of new particles

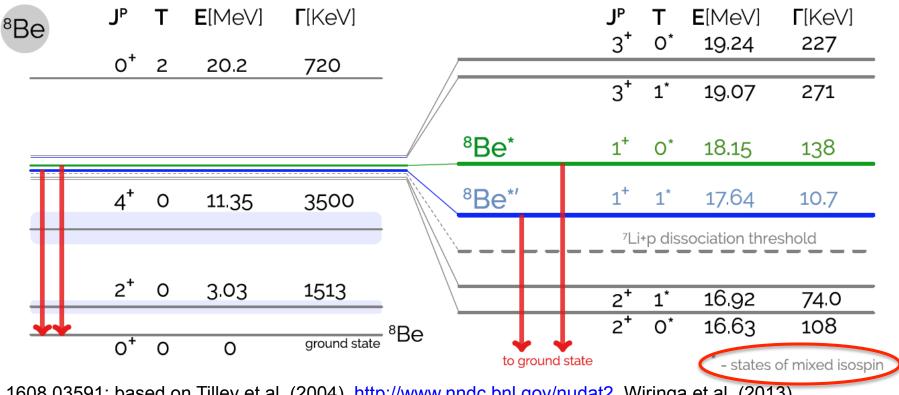
Treiman, Wilczek (1978) Donnelly, Freedman, Lytel, Peccei, Schwartz (1978) Savage, McKeown, Filippone, Mitchell (1986)

 A recent 6.8σ experimental anomaly might indicate the production of new particles in excited ⁸Be decays


A. J. Krasznahorkay et al., PRL, 1504.01527 [nucl-ex]

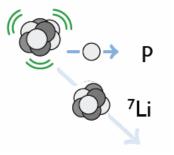
• Could these be 5th force gauge bosons?

Feng, Fornal, Galon, Gardner, Smolinsky, Tait, Tanedo, PRL, 1604.07411 [hep-ph]; PRD, 1608.03591 [hep-ph]


⁸BE AS A NEW PHYSICS LAB

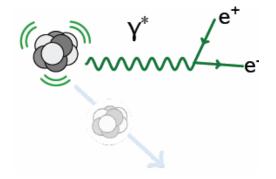
- ⁸Be is composed of 4 protons and 4 neutrons
- Excited states can be produced in large numbers through p + ⁷Li
 → high statistics "intensity" frontier
- Excited states decay to ground state with relatively large energies (~20 MeV)
- ⁸Be nuclear transitions then provide interesting probes of light, weakly-coupled particles

⁸BE SPECTRUM

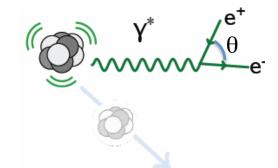

- Many excited states with different spins and isospins
- Of special interest: the ⁸Be* (18.15) and ⁸Be*' (17.64) states

1608.03591; based on Tilley et al. (2004), <u>http://www.nndc.bnl.gov/nudat2</u>, Wiringa et al. (2013) 13 Apr 2017

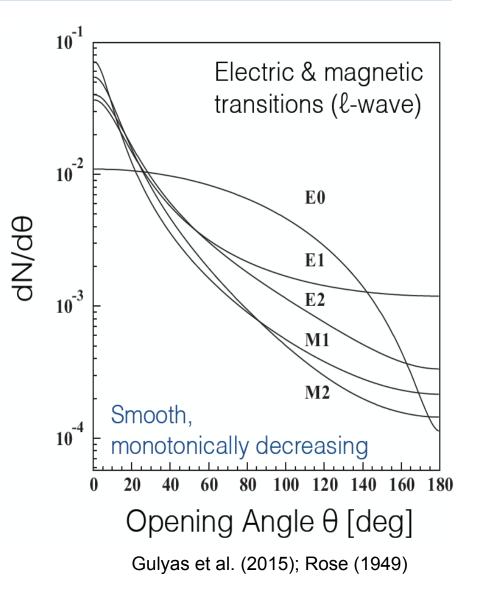
⁸BE* DECAY


Hadronic
 B(p ⁷Li) ≈ 100%

Electromagnetic
 B(⁸Be γ) ≈ 1.5 x 10⁻⁵



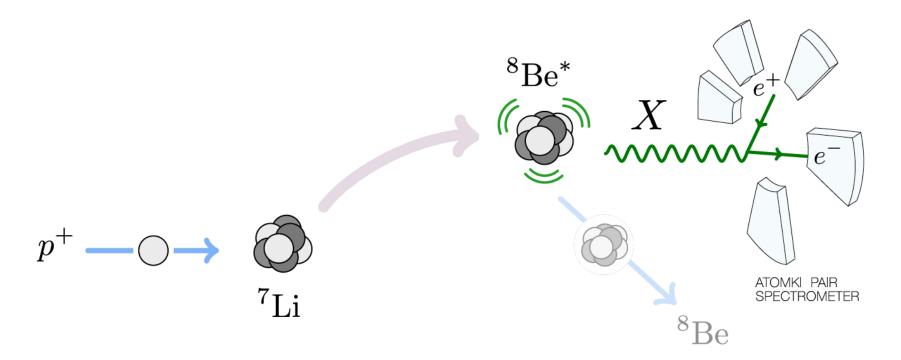
Internal Pair Creation
 B(⁸Be e⁺ e⁻) ≈ 5.5 x 10⁻⁸



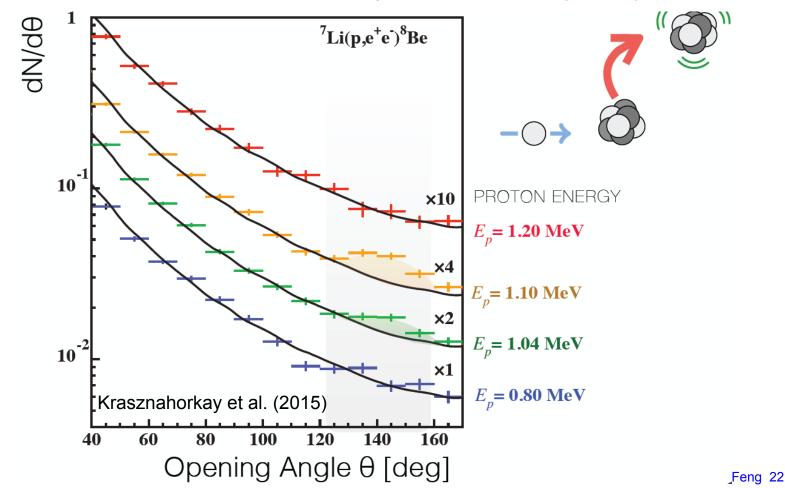
⁸BE* DECAY

Internal Pair Creation
 B(⁸Be e⁺ e⁻) ≈ 5.5 x 10⁻⁸

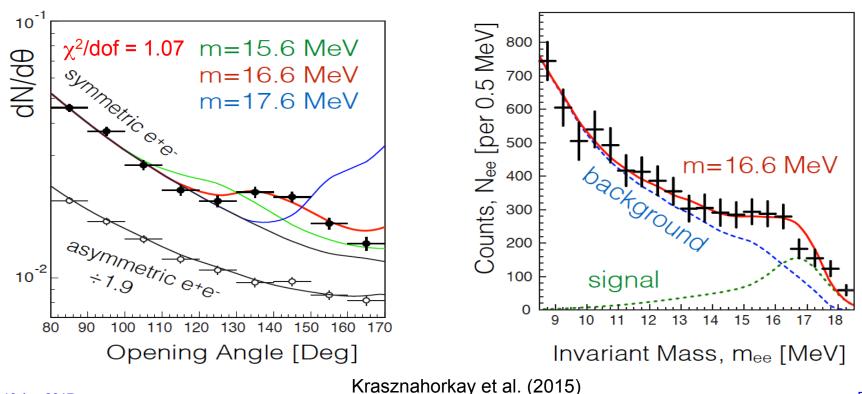
For e⁺e⁻ produced by a virtual photon, $dN/d\theta$ is sharply peaked at low opening angle θ and is expected to be a monotonically decreasing function of θ



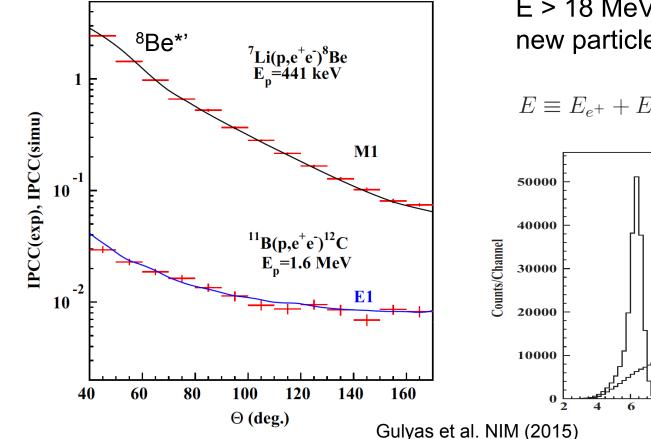
THE ATOMKI ⁸BE EXPERIMENT


THE ATOMKI ⁸BE EXPERIMENT

A 1 μ A p beam with $\Delta E_p \sim 10$ keV strikes a thin ⁷Li foil target. The beam energy can be adjusted to select various ⁸Be excited state resonances.


THE ATOMKI ANOMALY

- A bump at ~140 degrees is observed as one passes through the ⁸Be* resonance
- Background fluctuation probability: 5.6 x 10⁻¹² (6.8σ)


THE ATOMKI ANOMALY

- The θ (and m_{ee}) distributions can be explained by postulating a new particle and 2-step decay: ⁸Be^{*} → ⁸Be X, X → e⁺e⁻
- The best fit parameters: m = 16.7 ± 0.35 (stat) ± 0.5 (sys) MeV
 B(⁸Be^{*} → ⁸Be X) / B(⁸Be^{*} → ⁸Be γ) = 5.6 x 10⁻⁶

CROSS CHECKS

 For example: other (lower energy) decays fit theoretical expectations well

The excess is confined to events with symmetric energies, |y| < 0.5 and large summed energies E > 18 MeV, as expected for a new particle interpretation

$$E \equiv E_{e^+} + E_{e^-}$$
 $y \equiv \frac{E_{e^+} - E_{e^-}}{E_{e^+} + E_{e^-}}$

8

12

E_{sum} (MeV)

10

14

18

16

20

POSSIBLE EXPLANATIONS

Three possibilities:

- (1) an as-yet-unidentified nuclear experiment problem
- (2) an as-yet-unidentified nuclear theory effect
- (3) new particle physics

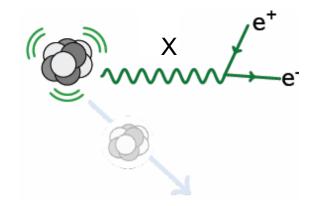
(1) Nuclear Experiment

- The excess consists of hundreds of events in each bin and is comparable to the background; not likely to disappear with more data
- The excess is not a "last bin" effect: bump, not smooth excess
- If a nuclear experimental problem, why does it only affect this one decay?
- If a nuclear experimental problem, the excellent fit to a new particle interpretation is purely coincidental
- Hungarian group is now collecting data with an improved detector, continues to see bump
- Followup experiments by others are being proposed (see below)

POSSIBLE EXPLANATIONS

(2) Nuclear Theory

- Must explain bump in 18.15 data
- Must simultaneously explain lack of similarly-sized bump in (isospinmixed) 17.64 data
- If a nuclear theory explanation, the excellent fit to a new particle interpretation is purely coincidental
- A detailed analysis of nuclear theory effects finds no reasonable explanation for the bump
 Zhang, Miller (2017)

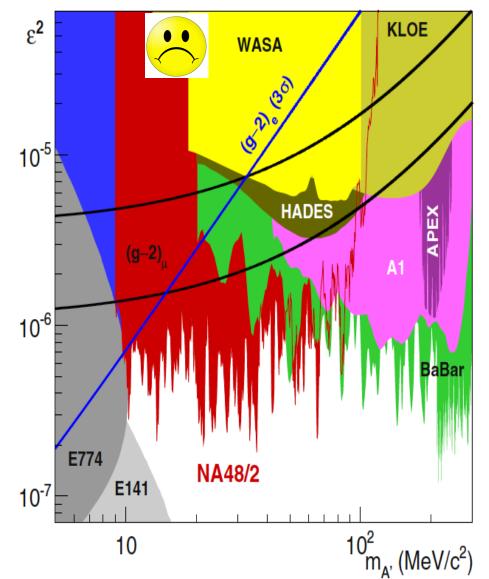

(3) Particle Physics

- If it's new physics, what kind of new particle can it be?
- Is it consistent with all other experiments?
- Are there complete particle physics models that can incorporate this new particle?
- What other experiments can confirm or exclude this?

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016); Gu, He (2016); Chen, Liang, Qiao (2016); Jia, Li (2016); Kitahara, Yamamoto (2016); Ellwanger, Moretti (2016); Kozaczuk, Morrissey, Stroberg (2016);....

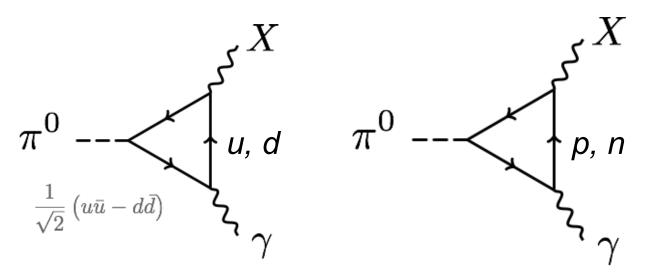
WHAT KIND OF NEW PARTICLE CAN IT BE?

Some Quick Observations


- Must couple to both quarks and electrons
- Must be neutral
- Must be a boson a 5th force

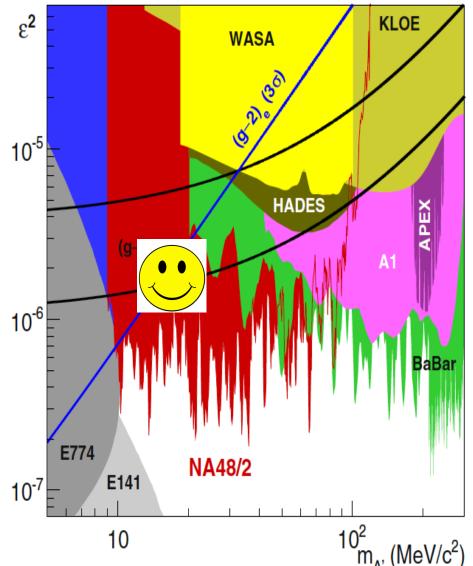
Not everything works

- For example: a spin 0 boson ("dark Higgs boson")
- J^P Assignments: $1^+ \rightarrow 0^+ 0^+$
- L Conservation: L = 1
- Parity Cons.: P = (-1)^L = 1
- Forbidden in parityconserving theories

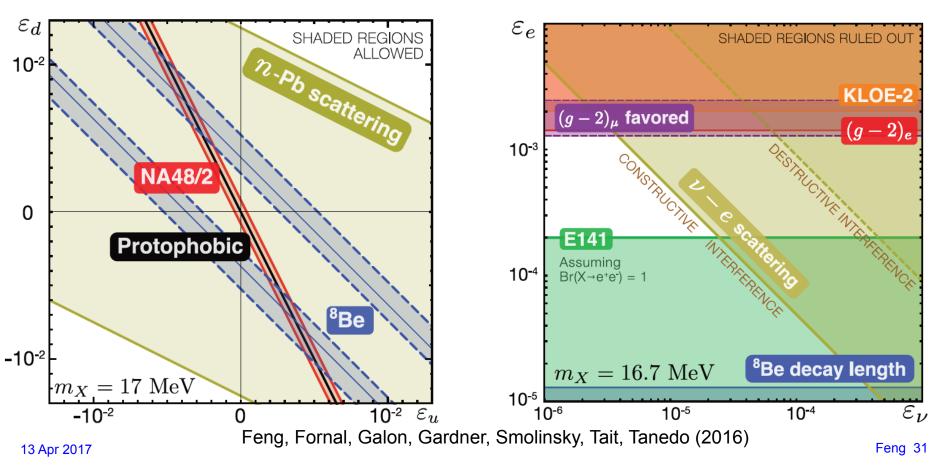

DARK PHOTON?

- Consider the case of a spin 1 gauge boson with general couplings $\epsilon_f e$ to particle f
- To get the right signal strength, need $|\varepsilon_u + \varepsilon_d| \approx 3.7 \times 10^{-3}$
- For the special case of a dark photon with ε_f = εQ_f, this implies kinetic mixing parameter ε ~ 0.01, which is excluded
- This is not a dark photon

PROTOPHOBIA


 The dominant constraints are null results from searches for exotic pion decays π⁰ → X γ → e⁺ e⁻ γ

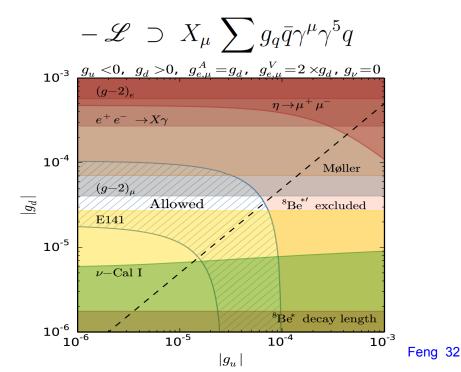
- Eliminated if $Q_u X_u Q_d X_d \approx 0$ or $2X_u + X_d \approx 0$ or $X_p \approx 0$
- A protophobic gauge boson with couplings to neutrons, but suppressed couplings to protons, can explain the ⁸Be signal without violating other constraints


PROTOPHOBIC GAUGE BOSON

- For a protophobic gauge boson, the NA48/2 "quark" constraints are weakened
- One can, then, take electron and muon couplings around 10⁻³. Such couplings are allowed by all constraints
- A protophobic gauge boson can resolve both the ⁸Be and muon g-2 anomalies
- Implies a milli-charged 5th force with range ~ 11 fm

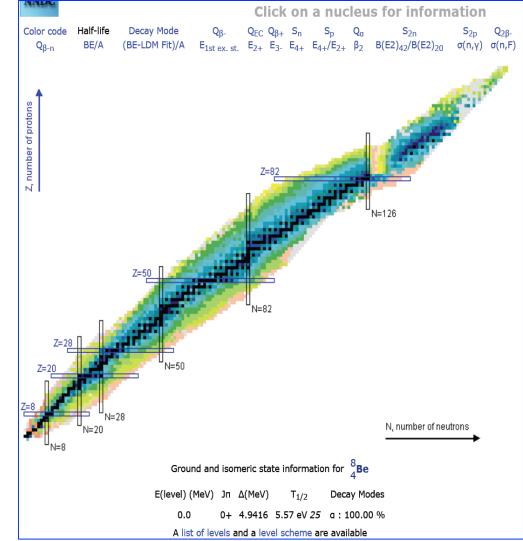
COUPLING CONSTRAINTS

• Considering all constraints, require ε_u , $\varepsilon_d \sim \text{few } 10^{-3} \text{ with}$ cancelation to ~10% for protophobia, $10^{-4} < \varepsilon_e < 10^{-3}$, and $|\varepsilon_e \varepsilon_v|^{1/2} < 3 \ge 10^{-4}$


PARTICLE MODELS

- How strange is protophobia? The Z boson is protophobic at low energies, as is a gauge boson coupling to B-L-Q or B-Q
- The latter observation suggests a model-building strategy: consider a model with a light B-L or B gauge boson. After kinetic mixing with the photon, the new boson's couplings can be B-L-Q or B-Q.

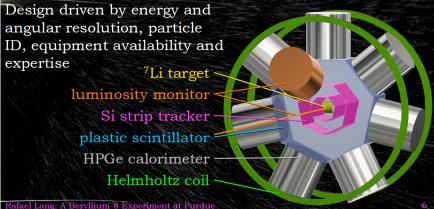
Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)


- Pseudoscalars have also been explored and are also possible Ellwanger, Moretti (2016)
- Axial vectors, which automatically decouple from pion decays, have been analyzed and are also possible

Kozaczuk, Morrissey, Stroberg (2016)

FUTURE TESTS: NUCLEAR PHYSICS

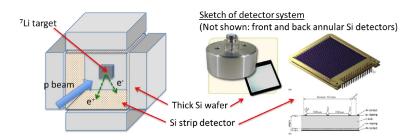
- The most direct follow-up tests are to look again at nuclear IPC transitions
- The ATOMKI group has new preliminary results with improved detectors for the 18.15 and 17.64 transitions
- Other groups may be able to duplicate this in nuclear labs or at particle experiments where ⁸Be transitions are used as a calibration source of high-energy photons
- Are other transitions possible? E.g., ⁴He (21.0), ¹⁰Be (17.8)


PROPOSED 8BE EXPERIMENTS

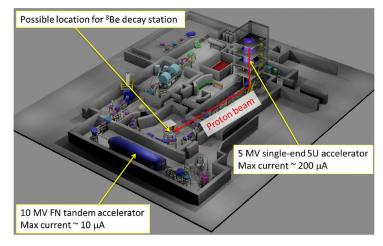
Purdue

Rafael F. Lang, Marc Caffee, David Koltick, Matthew Jones, Briijesh Srivastava, Thomas Ward Department of Physics and Astronomy, Purdue University New Ideas in Dark Matter, College Park, March 2017

High Resolution Magnetic Spectrometer

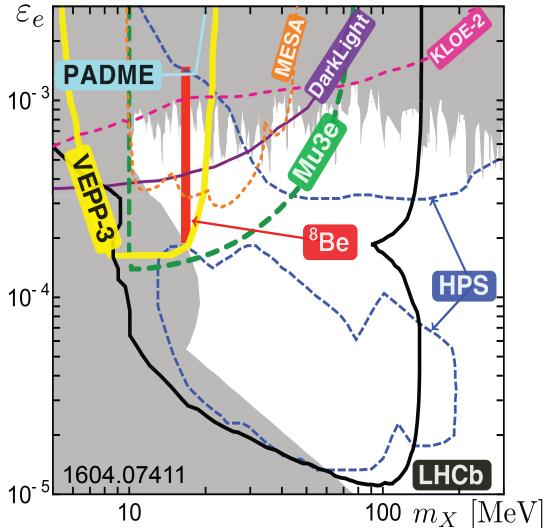


Notre Dame



A ⁸Be IPC Decay Measurement at the Notre Dame-NSL

M. Brodeur (U. Notre Dame) and K.G. Leach (Colorado School of Mines)


The Nuclear Science Laboratory of the University of Notre Dame

Timescale: 1-2 years, Total cost: ~ \$750K

FUTURE TESTS: PARTICLE PHYSICS

- There are a host of accelerator experiments that have been planned for dark photon searches, and 10 may also be sensitive to a17 MeV X boson
- Generally they look for e⁺e⁻ → γ A', posibly followed by A' → e⁺e⁻
- The ⁸Be results provide an interesting target for new accelerator searches for light, weakly-coupled particles

CONCLUSIONS

- A 5th force is an open and exciting possibility
- Dark matter provides new motivation to look for light, weakly-coupled particles that may mediate a 5th force
- There is currently a 6.8σ anomaly in ⁸Be* nuclear decays
- The data are consistent with new particle explanations, including a protophobic gauge boson that mediates a 5th force and simultaneously explains the muon g-2 anomaly
- The result, if true, has spectacular implications for all of science, but particular for particle physics and astrophysics (dark matter, force unification, etc.)
- Much work remains, but fortunately, quick and cheap follow-up experiments are in the works