THE BERYLLIUM ANOMALY AND NEW PHYSICS

Invisibles/Elusives Network

Jonathan Feng, University of California, Irvine

22 November 2016

OUTLINE

A. J. Krasznhorkay *et al.*, "Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson," 1504.01527 [nucl-ex], PRL 116, 042501 (2016)

J. Feng *et al.*, "Protophobic Fifth Force Interpretation of the Observed Anomaly in ⁸Be Nuclear Transitions," 1604.07411 [hep-ph], PRL 117, 071803 (2016)

J. Feng *et al.*, "Particle Physics Models for the 17 MeV Anomaly in Beryllium Nuclear Decays," 1608.03591 [hep-ph]

Bart Fornal

lftah Galon

Susan Gardner

Jordan Smolinsky

Tait

LIGHT, WEAKLY-COUPLED PARTICLES

- There are currently many outstanding puzzles: neutrino masses, gauge hierarchy, strong CP, flavor, dark matter, baryogenesis, dark energy,...
- Some of these motivate searches for new particles and forces at high energies
- But some also motivate searches for new physics that is light, but weakly coupled
- For example: neutrino masses, strong CP, and dark matter

AN EXAMPLE: DARK MATTER

• All evidence for dark matter is gravitational. Perhaps it is in a hidden sector, composed of particles with no SM gauge interactions (electromagnetic, weak, strong)

This hidden sector may have a rich structure with matter and forces of its own

Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982); Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); ...

VECTOR PORTAL

Holdom (1986)

- If the hidden sector has a massive U(1) gauge boson, the operator $\epsilon F_{\mu\nu}F_h^{\mu\nu}$ kinetic mixes the SM photon and the massive hidden photon
- In the mass basis, one finds that the physical states are the massless SM photon γ and a massive "dark photon" A'
- The SM photon does not couple to hidden particles. But the dark photon couples to SM particles with charges proportional to their SM charges

22 Nov 2016

DARK PHOTONS

 The kinetic mixing parameter: ε ~ 10⁻³ N from 1-loop effects, where N is the number of particles in the loop, even for arbitrarily heavy particles in the loop (non-decoupling)

- A dark photon mass $m_{A'} \sim 1-100$ MeV may induce strong DM self-interactions or (with $\varepsilon \sim 10^{-3}$) resolve the (g-2)_µ anomaly
- This motivates searches for dark photons in a vast, unexplored $(m_{A'}, \epsilon)$ parameter space with, perhaps, a region of special interest with $m_{A'} \sim 1-100$ MeV and $\epsilon \sim 10^{-3}$

CURRENT CONSTRAINTS

The world-wide program to search for dark photons A'

More to be done, but experiments already exclude A' as a $(g-2)_{\mu}$ solution

NEW PHYSICS IN NUCLEAR TRANSITIONS

 Nuclear transitions can be powerful probes of MeV-scale new physics

> Treiman, Wilczek (1978) Donnelly, Freedman, Lytel, Peccei, Schwartz (1978) Savage, McKeown, Filippone, Mitchell (1986)

 A recent 6.8σ experimental anomaly might indicate the production of new particles in excited ⁸Be decays

A. J. Krasznahorkay et al., PRL, 1504.01527 [nucl-ex]

⁸BE AS A NEW PHYSICS LAB

- ⁸Be is composed of 4 protons and 4 neutrons
- Excited states can be produced in large numbers through p + ⁷Li
 → high statistics "intensity" frontier
- Excited states decay to ground state with relatively large energies (~20 MeV)
- ⁸Be nuclear transitions then provide interesting probes of light, weakly-coupled particles

⁸BE SPECTRUM

- Many excited states with different spins and isospins
- Of special interest: the ⁸Be^{*} (18.15) and ⁸Be^{*}' (17.64) states

1609.07411; based on Tilley et al. (2004); National Nuclear Data Center, http://www.nndc.bnl.gov/nudat2/ 22 Nov 2016 Feng 10

⁸BE* DECAY

Hadronic
 B(p ⁷Li) ≈ 100%

Electromagnetic
 B(⁸Be γ) ≈ 1.5 x 10⁻⁵

Internal Pair Creation
 B(⁸Be e⁺ e⁻) ≈ 5.5 x 10⁻⁸

⁸BE* DECAY

Internal Pair Creation
 B(⁸Be e⁺ e⁻) ≈ 5.5 x 10⁻⁸

Given the photon propagator, dN/d θ is sharply peaked at low e⁺e⁻ opening angle θ and is expected to be a monotonically decreasing function of θ

THE ATOMKI ⁸BE EXPERIMENT

THE ATOMKI ⁸BE EXPERIMENT

A 1 μ A p beam with $\Delta E_p \sim 10$ keV strikes a thin ⁷Li foil target. The beam energy can be adjusted to select various ⁸Be excited state resonances.

THE ATOMKI ANOMALY

- A bump at ~140 degrees is observed as one passes through the ⁸Be* resonance
- Background fluctuation probability: 5.6 x 10⁻¹² (6.8σ)

THE ATOMKI ANOMALY

 The e⁺e⁻ opening angle θ (and invariant mass) distributions are well fit to a new particle: χ²/dof = 1.07

m = 16.7 ± 0.35 (stat) ± 0.5 (sys) MeV

 $B(^{8}Be^{*} \rightarrow ^{8}Be X) / B(^{8}Be^{*} \rightarrow ^{8}Be \gamma) = 5.6 \times 10^{-6}$

CROSS CHECKS

For example: other (lower ۲ energy) decays fit theoretical expectations well

The excess is confined to events with symmetric energies, |y| <0.5 and large summed energies E > 18 MeV

$$y \equiv E_{e^+} + E_{e^-}$$
 $y \equiv \frac{E_{e^+} - E_{e^-}}{E_{e^+} + E_{e^-}}$

22 Nov 2016

18

16

14

20

SIGNAL CHARACTERISTICS

- The excess consists of hundreds of events in each bin and is comparable to the background; this is not a statistical fluctuation
- The excess is not a "last bin" effect: bump, not smooth excess
- Comparable excess not seen for 17.64 MeV and other states; explainable by phase-space suppression for > 17 MeV particle
- Explanations of the signal: (1) an as-yet-unidentified experimental problem, (2) an as-yet-unidentified nuclear theory effect, (3) new particle physics. In the first two cases, the excellent fit to a new particle interpretation is purely coincidental.
- Clearly all explanations should be considered (and they are being considered!). Here focus on new particle interpretations.

NEW PHYSICS QUESTIONS

- What kinds of neutral bosons are possible?
- What are the required parton-level couplings?
- Are these consistent with all other experiments?
- Is there an anomaly-free model that predicts this?
- What other experiments can check this?

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016); Gu, He (2016); Chen, Liang, Qiao (2016); Jia, Li (2016); Kitahara, Yamamoto (2016); Ellwanger, Moretti (2016); ...

SPIN 0 NEUTRAL BOSONS

SCALARS "DARK HIGGS"

PSEUDOSCALARS "AXION-LIKE PARTICLES"

• J^P Assignments: $1^+ \rightarrow 0^+ 0^+$

• L Conservation: L = 1

• Parity Conservation: $P = (-1)^{L} = 1$

Forbidden in parity-conserving theories

We noted that the aγγ couplings are highly constrained at 17 MeV

 But Ellwanger and Moretti (2016) noted that these constraints are modified by the required a → e⁺e⁻ decays and found phenomenologically viable parameters

SPIN-1 GAUGE BOSONS

- What quark-, nucleon-level couplings are required? In general requires calculating nuclear matrix elements
- But for 1⁻ vector, in the EFT, there is only 1 operator $\frac{1}{\Lambda} \epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}{}^{8} \text{Be}_{\nu}^{*} - \partial_{\nu}{}^{8} \text{Be}_{\mu}^{*} \right) X_{\alpha\beta}{}^{8} \text{Be}$
- Neglecting isospin mixing, $\Gamma(^{8}\text{Be}^{*} \to ^{8}\text{Be}X) = \frac{(e/2)^{2}(\varepsilon_{p} + \varepsilon_{n})^{2}}{3\pi\Lambda^{2}}|\mathcal{M}|^{2}|\vec{p}_{X}|^{3}$
- The nuclear matrix elements and Λ cancel in the ratio $\frac{B(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}X)}{B(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}\gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\vec{p}_{X}|^{3}}{|\vec{p}_{\gamma}|^{3}} \approx 5.6 \times 10^{-6}$

where $\varepsilon_p = 2\varepsilon_u + \varepsilon_d$ and $\varepsilon_n = \varepsilon_u + 2\varepsilon_d$ are the nucleon X-charges (in units of e)

THE REQUIRED PARTON-LEVEL COUPLINGS

 To get the right signal strength:

 $|\varepsilon_u + \varepsilon_d| \approx 3.7 \times 10^{-3}$

 For a dark photon with couplings proportional to SM couplings, this implies kinetic mixing parameter 10⁻⁶
 ε ~ 0.01

which is excluded

 This cannot be a dark photon

PROTOPHOBIA

 The dominant constraints are null results from searches for π⁰ → X γ → e⁺ e⁻ γ

- Eliminated if $Q_u X_u Q_d X_d \approx 0$ or $2X_u + X_d \approx 0$ or $X_p \approx 0$
- A protophobic gauge boson with couplings to neutrons, but suppressed couplings to protons, can explain the ⁸Be signal without violating other constraints

PROTOPHOBIC GAUGE BOSON

• The ⁸Be anomaly can be explained by a protophobic gauge boson with $\epsilon_n \sim 10^{-2}$ and $\epsilon_p < 10^{-3}$

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

EFFECT OF ISOSPIN MIXING

 There are strong indications that the ⁸Be 1⁺ states are isospin-mixed

$$\Psi_J^a = \alpha_J \Psi_{J,T=0} + \beta_J \Psi_{J,T=1} \qquad \alpha_1 = 0.21(3)$$

$$\Psi_J^b = \beta_J \Psi_{J,T=0} - \alpha_J \Psi_{J,T=1} \qquad \beta_1 = 0.98(1)$$

Barker (1966); Oothoudt, Garvey (1977); Pastore, Wiringa, Pieper, Schiavilla (2014)

- In general, this can have a large effect on the width, changing $\frac{\Gamma({}^{8}\text{Be}^{*} \rightarrow {}^{8}\text{Be}X)}{\Gamma({}^{8}\text{Be}^{*} \rightarrow {}^{8}\text{Be}\gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\mathbf{k}_{X}|^{3}}{|\mathbf{k}_{\gamma}|^{3}}$ to $\frac{\Gamma_{X}}{\Gamma_{\gamma}} = |-0.09 (\varepsilon_{p} + \varepsilon_{n}) + 1.09 (\varepsilon_{p} - \varepsilon_{n})|^{2} \frac{|\mathbf{k}_{X}|^{3}}{|\mathbf{k}_{\gamma}|^{3}}$
- In the protophobic limit, however, the effect is O(10%)

EFFECTS OF ISOSPIN MIXING

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

LEPTON COUPLING CONSTRAINTS

- Consider all constraints and also the region favored by (g-2)μ
- In the end, require $10^{-4} < \varepsilon_e < 10^{-3}$, and $|\varepsilon_e \varepsilon_v|^{1/2} < 3 \ge 10^{-4}$

ANOMALY-FREE MODELS

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

- How strange is protophobia? The Z boson is protophobic at low energies, as is a gauge boson coupling to B-L-Q or B-Q
- The latter observation suggests a model-building strategy: consider a model with a light B-L or B gauge boson. It will generically kinetically mix with the photon:

$$\mathcal{L} = -\frac{1}{4}\widetilde{F}_{\mu\nu}\widetilde{F}^{\mu\nu} - \frac{1}{4}\widetilde{X}_{\mu\nu}\widetilde{X}^{\mu\nu} + \frac{\epsilon}{2}\widetilde{F}_{\mu\nu}\widetilde{X}^{\mu\nu} + \frac{1}{2}m_{\widetilde{X}}^{2}\widetilde{X}_{\mu}\widetilde{X}^{\mu} + \sum_{f}\bar{f}iDf$$

 In the mass basis, the SM photon couplings to SM fermions are unchanged, but the B-L or B gauge boson's couplings to SM fermions will be shifted by Q.

A B-L PROTOPHOBIC MODEL

- Gauge the $U(1)_{B-L}$ global symmetry of the SM. This is anomaly-free with the addition of 3 sterile neutrinos.
- Generically the B-L boson kinetically mixes with the photon:

$$\begin{split} \varepsilon_{u} &= \frac{1}{3} \varepsilon_{B-L} + \frac{2}{3} \varepsilon & \varepsilon_{u} &= -\frac{1}{3} \varepsilon_{B-L} + \frac{2}{3} \delta \\ \varepsilon_{d} &= \frac{1}{3} \varepsilon_{B-L} - \frac{1}{3} \varepsilon & \varepsilon &\equiv -\varepsilon_{B-L} + \delta & \varepsilon_{d} &= \frac{2}{3} \varepsilon_{B-L} - \frac{1}{3} \delta \\ \varepsilon_{\nu} &= -\varepsilon_{B-L} & \varepsilon_{\nu} &= -\varepsilon_{B-L} \\ \varepsilon_{e} &= -\varepsilon_{B-L} - \varepsilon & \varepsilon_{e} &= -\delta & . \end{split}$$

For ε ≈ -ε_{B-L} to O(10%) (small δ), we get B-L-Q charges:
 ε_u ≈ ε/3 and ε_d ≈ -2ε/3 (protophobia) and ε_e << ε_{u,d}. The neutrino X-charge is, however, generically too big.

A B-L PROTOPHOBIC MODEL

 The neutrino charges can be neutralized by mixing with new, vector-like "4th generation" leptons with opposite B-L charge.

Field	Isospin I	Hypercharge Y	B-L
$h_{ m SM}$	$\frac{1}{2}$	$\frac{1}{2}$	0
$\ell_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\frac{1}{2}$	$-\frac{1}{2}$	-1
e_R	0	-1	-1
$ u_R$	0	0	-1
h_X	0	0	2
$L_{i_L} = \begin{pmatrix} \nu_{i_L} \\ e_{i_L} \end{pmatrix}$	$\frac{1}{2}$	$-\frac{1}{2}$	1
$L_{i_R} = \begin{pmatrix} \nu_{i_R} \\ e_{i_R} \end{pmatrix}$	$\frac{1}{2}$	$-\frac{1}{2}$	1
E_{i_L}	0	-1	1
E_{i_R}	0	-1	1

- When the B-L Higgs boson gets a ~10 GeV vev, it
 - gives a 17 MeV mass to the B-L gauge boson
 - Mixes the SM and new neutrino fields, neutralizing the neutrinos
 - Generates a Majorana mass for the SM neutrinos \rightarrow see-saw
- Implies ~100 GeV 4th generation leptons

A U(1)_B PROTOPHOBIC MODEL

 Alternatively, can gauge the U(1)_B global symmetry of the SM. After kinetic mixing,

$$\varepsilon_{u} = \frac{1}{3}\varepsilon_{B} + \frac{2}{3}\varepsilon$$
$$\varepsilon_{d} = \frac{1}{3}\varepsilon_{B} - \frac{1}{3}\varepsilon \qquad \varepsilon \equiv -\varepsilon_{B} + \delta$$
$$\varepsilon_{\nu} = 0$$
$$\varepsilon_{e} = -\varepsilon .$$

 Now the neutrino is automatically neutral, but we need new fields to cancel anomalies. One of these can be dark matter, and the X boson is then a dark force carrier.

$$\begin{split} \varepsilon_u &= -\frac{1}{3}\varepsilon_B + \frac{2}{3}\delta \\ \varepsilon_d &= \frac{2}{3}\varepsilon_B - \frac{1}{3}\delta \\ \varepsilon_\nu &= 0 \\ \varepsilon_e &= \varepsilon_B - \delta \ , \end{split}$$

Field	Isospin I	Hypercharge Y	В
S_B	0	0	3
Ψ_L	$\frac{1}{2}$	$-\frac{1}{2}$	B_1
Ψ_R	$\frac{\overline{1}}{2}$	$-\frac{1}{2}$	B_2
η_R	$\overline{0}$	-1	B_1
η_L	0	-1	B_2
χ_R	0	0	B_1
χ_L	0	0	B_2

FUTURE TESTS: NUCLEAR PHYSICS

- The most direct follow-up tests are to look again at nuclear IPC transitions
- The ATOMKI group has new preliminary results with improved detectors for the 18.15 and 17.64 transitions
- Other groups may be able to duplicate this in nuclear labs or at particle experiments where ⁸Be transitions are used as a calibration source of high-energy photons
- Are other transitions possible? E.g., ¹⁰B (19.3), ¹⁰Be (17.8)

FUTURE TESTS: "DARK PHOTON" EXPTS

- Also SHiP, SeaQuest, ... There are a host of experiments that have long been planned for dark photon searches, and may now be sensitive to the 17 MeV range.
- See "Advances in Dark Matter and Particle Physics 2016," Messina, Italy, October 2016

CONCLUSIONS

- There is currently a 6.8σ anomaly in ⁸Be* IPC decays. A particle interpretation yields a χ²/dof = 1.07 best fit with m = 16.7 ± 0.35 (stat) ± 0.5 (sys) MeV
 B(⁸Be* → ⁸Be X) / B(⁸Be* → ⁸Be γ) = 5.6 x 10⁻⁶
- The data are consistent with a protophobic gauge boson that simultaneously resolves (to within 2σ) the discrepancy in (g-2)_µ
- In simple SM extensions, the protophobic gauge boson is realized by a U(1)_{B-L} or U(1)_B gauge boson that kinetically mixes with the photon
- Many opportunities for near future experimental tests