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LIGHT, WEAKLY-COUPLED PARTICLES

22N

There are currently many outstanding puzzles: neutrino
masses, gauge hierarchy, strong CP, flavor, dark matter,
baryogenesis, dark energy,...

Some of these motivate searches for new particles and
forces at high energies

But some also motivate searches for new physics that is
light, but weakly coupled

For example: neutrino masses, strong CP, and dark
matter
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AN EXAMPLE: DARK MATTER

« All evidence for dark matter is gravitational. Perhaps it
Is in a hidden sector, composed of particles with no SM
gauge interactions (electromagnetic, weak, strong)

« This hidden sector may have a rich structure with
matter and forces of its own

Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982);
Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); ...
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VECTOR PORTAL

Holdom (1986)

 If the hidden sector has a massive U(1) gauge boson, the
operator €F,.,F;" kinetic mixes the SM photon and the

massive hidden photon

* In the mass basis, one finds that the physical states are the
massless SM photon Y and a massive “dark photon™ A

 The SM photon does not couple to hidden particles. But the
dark photon couples to SM particles with charges proportional
to their SM charges
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DARK PHOTONS

« The kinetic mixing parameter: ¢ ~ 103 N from 1-loop effects,
where N is the number of particles in the loop, even for
arbitrarily heavy particles in the loop (non-decoupling)

A Y

« Adark photon mass m, ~ 1-100 MeV may induce strong DM
self-interactions or (with ¢ ~ 10-°) resolve the (g-2), anomaly

* This motivates searches for dark photons in a vast, unexplored

(m,, €) parameter space with, perhaps, a region of special
interest with m, ~ 1-100 MeV and ¢ ~ 10°
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CURRENT CONSTRAINTS

The world-wide program to search for dark photons A
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More to be done, but experiments already exclude A" as a (g-2), solution
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NEW PHYSICS IN NUCLEAR TRANSITIONS

* Nuclear transitions can be powerful probes of MeV-scale
new physics
Treiman, Wilczek (1978)

Donnelly, Freedman, Lytel, Peccei, Schwartz (1978)
Savage, McKeown, Filippone, Mitchell (1986)

* Arecent 6.80 experimental anomaly might indicate the
production of new particles in excited 8Be decays

A. J. Krasznahorkay et al., PRL, 1504.01527 [nucl-ex]
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SBE AS A NEW PHYSICS LAB

« 3Be is composed of 4 protons
and 4 neutrons

» Excited states can be produced (( @

in large numbers through p + “Li
—> high statistics “intensity”
frontier

Resonant

Production s\,

W

» Excited states decay to ground
state with relatively large Discrete
energies (~20 MeV) ransitions

« 8Be nuclear transitions then
provide interesting probes of
light, weakly-coupled particles
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SBE SPECTRUM

Many excited states with different spins and isospins

Of special interest: the 8Be* (18.15) and 8Be* (17.64) states

8B J T EMeV] TlKeV] JF T EMeV]l TIKeVl
3 0" 1024 227
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— — | |- — _tipdisociation treshold _ _
2" 0 3.03 1513 2t 1°  16.92 74.0
2* 0" 166 108
of o 0 ground state “Be v v 3

to ground state

" - states of mixed isospin

1609.07411; based on Tilley et al. (2004); National Nuclear Data Center, http://www.nndc.bnl.gov/nudat2/
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SBE* DECAY

 Hadronic

B(p 7Li) = 100%

» Electromagnetic

B(®Be y) = 1.5 x 10

Internal Pair Creation
B(®Be e* &)= 5.5x 10°

=\
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O+ P

Q
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SBE* DECAY

* |nternal Pair Creation
B(®Be e* e)=5.5x 10°

((@’V\/\fl\/\/\ie

Given the photon propagator,
dN/d6 is sharply peaked at low
e*e  opening angle 6 and is
expected to be a monotonically
decreasing function of 6
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Gulyas et al. (2015); Rose (1949)
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THE ATOMKI 8BE EXPERIMENT
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THE ATOMKI 8BE EXPERIMENT

A 1 uA p beam with AE; ~ 10 keV strikes a thin Li foil
target. The beam energy can be adjusted to select various

8Be excited state resonances.
SBe* Q’L@
() MXN\%\L‘

ATOMKI PAIR
SPECTROMETER

O
(®) |} ) \
D€
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THE ATOMKI ANOMALY

« Abump at ~140 degrees is observed as one passes through
the 8Be* resonance

Background fluctuation probability: 5.6 x 10-'2(6.80)

1§ (( 2
" 7Li(p ,e+e')8Be @

PROTON ENERGY

dN/d®

E/}= 1.20 MeV

E =110 MeV
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THE ATOMKI ANOMALY

 The e*e opening angle 6 (and invariant mass) distributions
are well fit to a new particle: y?/dof = 1.07

m = 16.7 + 0.35 (stat) £ 0.5 (sys) MeV
B(¢Be* - 8Be X)/ B(3Be* > 8Be v) = 5.6 x 106

D | m=15.6 MeV
S| 6)//)) Mm=16.6 MeV
= m=17.6 MeV

Counts, Nee [per 0.5 MeV]
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Krasznahorkay et al. (2015)
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CROSS CHECKS

For example: other (lower
energy) decays fit theoretical
expectations well

Counts/Channel

The excess is confined to events
with symmetric energies, |y| <

0.5 and large summed energies
E > 18 MeV
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SIGNAL CHARACTERISTICS

« The excess consists of hundreds of events in each bin and is
comparable to the background; this is not a statistical fluctuation

 The excess is not a “last bin” effect: bump, not smooth excess

 Comparable excess not seen for 17.64 MeV and other states;
explainable by phase-space suppression for > 17 MeV particle

« Explanations of the signal: (1) an as-yet-unidentified experimental
problem, (2) an as-yet-unidentified nuclear theory effect, (3) new
particle physics. In the first two cases, the excellent fit to a new
particle interpretation is purely coincidental.

» Clearly all explanations should be considered (and they are being
considered!). Here focus on new particle interpretations.
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NEW PHYSICS QUESTIONS

What kinds of neutral bosons are possible?

What are the required parton-level couplings?

Are these consistent with all other experiments?

Is there an anomaly-free model that predicts this?

What other experiments can check this?

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016); Gu, He (2016);
Chen, Liang, Qiao (2016); Jia, Li (2016); Kitahara, Yamamoto (2016); Ellwanger, Moretti (2016) ; ...
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SPIN 0 NEUTRAL BOSONS

SCALARS PSEUDOSCALARS
“DARK HIGGS” “AXION-LIKE PARTICLES”
« JP Assignments: 1* > 0* 0* « We noted that the ayy couplings are highly

constrained at 17 MeV

L Conservation: L =1 10
1073 @’
—_ O
L 10 \N/’
2 0 S
 Parity Conservation: P = (-1)- = 1 S 10_ D
° SN1987a _CC,__’
1077 -(DO: -
. . . ' 10—180_4 . ....1.8_3 . ....1.8_2 . ....1.8_1 R 100
« Forbidden in parity-conserving 1, [GeV]
theories « But Ellwanger and Moretti (2016) noted that

these constraints are modified by the
required a - e*e- decays and found
phenomenologically viable parameters
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SPIN-1 GAUGE BOSONS

« What quark-, nucleon-level couplings are required? In
general requires calculating nuclear matrix elements

« But for 1- vector, in the EFT, there is only 1 operator

1 14 * *
G *7(9,°Be;, — 9,°Be},) Xas"Be
8 _ = ST
» Neglecting isospin mixing, {Bel(Pyup + 1yun)|"Be”),

Y
(6/2)2(5 +5n)2 o
o 2o i e

* The nuclear matrix elements and A cancel in the ratio
B(SBe* — 8BeX) 0 |]§’X|3

— (ep4+2,)? 2 ~5.6x%x10°°
B(*Be™ — ®Be~) (Epten) AR §

['(®Be* = ®*Be X ) =

where ¢, = 2¢,,+¢c4 and ¢,, = &, +2¢4 are the nucleon
X-charges (in units ot €)
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THE REQUIRED PARTON-LEVEL COUPLINGS

+ To get the right signal €2 WASA KLOE
strength: A
g
ey +cq| = 3.7 x 1073 o8 iy

« For a dark photon with AD
couplings proportional to
SM couplings, this implies
kinetic mixing parameter 10° ’h'm

e ~0.01
which is excluded

NA48/2
i 10-7 E141
 This cannot be a dark o | ]

2
photon 10 10n, (MeV/cd)
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PROTOPHOBIA

* The dominant constraints are null results from searches for
' 2> Xy>etey
X X

g &

0 0
( ——<~ u, d T ——<* p, n

é (uts — dd) lL( %_{

l Y
* Eliminated if Q X ,— QuX;=0or 2X,+ X;=0or X, =0

» A protophobic gauge boson with couplings to neutrons, but
suppressed couplings to protons, can explain the 8Be signal
without violating other constraints
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PROTOPHOBIC GAUGE BOSON

« The 8Be anomaly can be explained by a protophobic gauge
boson with ¢, ~ 10 and ¢, < 10

™
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DARK PHOTON ‘ ¢
'DARK PHOTON |
0 — 2/
mx = 16.7 MeV. R L \ 17
Ep X 103 -10 -5 0 0.05

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)
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EFFECT OF ISOSPIN MIXING

« There are strong indications that the Be 1* states are
Isospin-mixed
VG =a,Vyr—o+ 85V r=1 ap = 0.21(3)

U = BV r_0 — asV o B1 = 0.98(1)
Barker (1966); Oothoudt, Garvey (1977); Pastore, Wiringa, Pieper, Schiavilla (2014)

 In general, this can have a large effect on the width,

changing [(3Be* — %Be X) ot )2|kx|3
[(%Be* — %Bey) 7 ™ |k |?

to Ty > x|
— = | —=0.09 (¢ €n 1.09 (e, — n
T | (€p +en) + (€p ) k|3

 In the protophobic limit, however, the effect is O(10%)
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EFFECTS OF ISOSPIN MIXING
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Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)
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LEPTON COUPLING CONSTRAINTS

Consider all constraints and also the region favored by (g-2)u

In the end, require 104 < €, < 103, and |e¢,|"? <3 x 104

108 5

. Assuming
107} Br(X-e'e) =1

10° '
10®

22 Nov 2016 Feng 27



ANOMALY-FREE MODELS

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

 How strange is protophobia? The Z boson is protophobic at
low energies, as is a gauge boson coupling to B-L-Q or B-Q

* The latter observation suggests a model-building strategy:
consider a model with a light B-L or B gauge boson. It will
generically kinetically mix with the photon:

1~ ~ l~ =~ €

L= 7 FuF" — 2 Xu X" 4 2

4 4

~ ~ 1 ~ ~ _
F, XM + §m§zXMX” +> filpf
f

* In the mass basis, the SM photon couplings to SM fermions
are unchanged, but the B-L or B gauge boson’s couplings to
SM fermions will be shifted by Q.
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A B-L PROTOPHOBIC MODEL

Gauge the U(1)g, global symmetry of the SM. This is
anomaly-free with the addition of 3 sterile neutrinos.

Generically the B-L boson kinetically mixes with the photon:

1 _|_2 1 25
Eu = —EB_ —€ w— ——EB_ —
3 B-—L 3 € 353 L+3
1 1 2 15
Ed = —EB_I — —€ — — — — —
d 3 B—L 3 5:_5B—L+5 Ed 35B—L 3
&y = —€B-L Ey = —E€B-L
Ee = —€B-L — €, Ee = —0 .

For € = -5, to O(10%) (small §), we get B-L-Q charges:

€,= €/3 and €, = -2€/3 (protophobia) and €, << €, 4. The
neutrino X-charge is, however, generically too big.
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A B-L PROTOPHOBIC MODEL

Field [sospin I Hypercharge Y B — L

* The neutrino charges B ! I 0
can be neutralized by = @ 3 3 -1
mixing with new, e 0 ~1 ~1
vector-like “4th o - - -
generation” leptons L, = (e) ! 1 !
with opposite B-L L () s L 1
charge. P B

E;, 0 —1

« When the B-L Higgs boson gets a ~10 GeV vey, it
— gives a 17 MeV mass to the B-L gauge boson
— Mixes the SM and new neutrino fields, neutralizing the neutrinos
— Generates a Majorana mass for the SM neutrinos - see-saw

* Implies ~100 GeV 4! generation leptons
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A U(1), PROTOPHOBIC MODEL

 Alternatively, can gauge the U(1)g global symmetry of the

SM. After kinetic mixing,

1 +2
Eu = —€ —£

37773

1 1 — _
5d:§53—§5 €= —ep+0
e, =0
Eo = —C€ .

 Now the neutrino is
automatically neutral, but we
need new fields to cancel
anomalies. One of these can
be dark matter, and the X

boson is then a dark force
carrier.
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FUTURE TESTS: NUCLEAR PHYSICS

« The most direct follow-up
tests are to look again at
nuclear IPC transitions

 The ATOMKI group has new
preliminary results with
improved detectors for the
18.15 and 17.64 transitions

« Other groups may be able to
duplicate this in nuclear labs
or at particle experiments
where 8Be transitions are
used as a calibration source
of high-energy photons

 Are other transitions
possible? E.g., °B (19.3),
0Be (17.8)
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A [ I
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o -

g -

S

s . .

o - .

2 -- ¥ a _J

g 7=82 o |

=

N .

N=126
u
Z=50 = u
B
- N=82
z=28 ]
7=20 N=50
Z=8
T TN=28
“N=20 N, number of neutrons
_—_—
N=8
Ground and isomeric state information for ZBe
E(level) (MeV) In A(MeV) Ti/2 Decay Modes
0.0 0+ 4.9416 5.57eV25 a:100.00 %

A list of levels and a level scheme are available
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FUTURE TESTS: “DARK PHOTON” EXPTS

* Also SHiP, SeaQuest,

. There are a host
of experiments that
have long been
planned for dark
photon searches, and
may now be sensitive
to the 17 MeV range.

« See “Advances in
Dark Matter and
Particle Physics
2016,” Messina, Italy,
October 2016
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CONCLUSIONS

« There is currently a 6.8c anomaly in 8Be* IPC decays. A
particle interpretation yields a y?/dof = 1.07 best fit with

m = 16.7 £ 0.35 (stat) £ 0.5 (sys) MeV
B(8Be* - 8Be X) / B(8Be* = éBe y) = 5.6 x 10

« The data are consistent with a protophobic gauge boson
that simultaneously resolves (to within 2o) the discrepancy

in (g-2),

* In simple SM extensions, the protophobic gauge boson is

realized by a U(1)g_ or U(1)g gauge boson that kinetically
mixes with the photon

« Many opportunities for near future experimental tests
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