FIFTH FORCES

Symmetry Tests in Nuclei and Atoms KITP, Santa Barbara

Jonathan Feng, UC Irvine

19 September 2016

FUNDAMENTAL FORCES

• We know of four fundamental forces

- A fifth one would be a big deal
- Forces can be mediated by a host of particles: pions, Higgs boson, dilaton, towers of KK gravitons,...
- In this talk, "5th force" refers to a force mediated by a new spin-1 gauge boson

5TH FORCE MOTIVATION: UNIFICATION

• Quantum numbers: e.g., SU(3) x SU(2) x U(1) \rightarrow SO(10)

Ψ	SU (3)c	SU (2) _L	Y
uR	3	1	2/3
dR	3	1	-1/3
1 _L	1	2	-1/2
eR	1	1	-1
VR	1	1	0

- Unification of couplings: at a perturbative value and at a scale below $\rm M_{\rm planck}$ but high enough to satisfy proton decay

Any GUT group SO(10) or bigger has rank > 4, implies 5th force: U(1)_{B-L}, Z' gauge bosons, etc.

5TH FORCE MOTIVATION: DARK MATTER

 All evidence for dark matter is gravitational. Perhaps its in a hidden sector, composed of particles with no SM gauge interactions (electromagnetic, weak, strong)

This hidden sector may have a rich structure with matter and forces of its own

Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982); Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); ...

DM PORTALS

- Astrophysics is sensitive to DM-DM interactions, but particle and nuclear physics are determined by DM-SM interactions
- There are many ways the hidden particles could couple to us. Use effective operators as an organizing principle:

$$\mathcal{L} = \mathcal{O}_4 + \frac{1}{M}\mathcal{O}_5 + \frac{1}{M^2}\mathcal{O}_6 + \dots$$

where the operators are grouped by their mass dimension, with [scalar] = 1, [fermion] = 3/2, $[F_{\mu\nu}] = 2$

• *M* is a (presumably) large "mediator mass," so start with dimension 4 operators. Some of the few possibilities:

$$h^{\dagger}h\phi_{h}^{\dagger}\phi_{h}$$

 $F_{\mu\nu}F_{h}^{\mu\nu}$

Neutrino portal

hLN

Higgs portal

Vector portal

VECTOR PORTAL

Holdom (1986)

- The operator $\epsilon F_{\mu\nu}F_h^{\mu\nu}$ leads to kinetic mixing between the SM photon and the massive hidden photon
- Diagonalizing, one finds that the physical states are the massless SM photon γ and a massive "dark photon" A'
- SM particles f have hidden charge proportional to εeQ_f, but hidden particles f_h are SM-neutral

DARK FORCE

 ε ~ 10⁻³ N from 1-loop effects, where N is the number of particles in the loop, even for arbitrarily heavy particles in the loop (non-decoupling)

- Dark matter distributions (halo profiles) may indicate strong DM self-interactions with a force carrier of mass ~ 1-100 MeV
- This motivates searches for a "dark force" mediated by dark photons, a 5th force parameterized by (m_{A'}, ϵ), with, perhaps, a region of special interest with m_{A'} ~ 1-100 MeV and ϵ ~ 10⁻³

CURRENT CONSTRAINTS

This has motivated a world-wide program to search for A'

FIFTH FORCE IN NUCLEAR TRANSITIONS

 Nuclear transitions are natural places to look for MeVscale new particles

> Treiman, Wilczek (1978) Donnelly, Freedman, Lytel, Peccei, Schwartz (1978) Savage, McKeown, Filippone, Mitchell (1986)

 A recent 6.8σ experimental anomaly might indicate the production of new particles in excited ⁸Be decays

A. J. Krasznahorkay et al., PRL, 1504.01527 [nucl-ex]

• Could these be 5th force gauge bosons?

Feng, Fornal, Galon, Gardner, Smolinsky, Tait, Tanedo, PRL, 1604.07411 [hep-ph], 1608.03591 [hep-ph]

THE EXPERIMENTAL RESULT

A. J. Krasznahorkay et al., 1504.01527 [nucl-ex]

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T.J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV $(J^{\pi} = 1^+, T = 1)$ state \rightarrow ground state $(J^{\pi} = 0^+, T = 0)$ and the isoscalar magnetic dipole 18.15 MeV $(J^{\pi} = 1^+, T = 0)$ state \rightarrow ground state transitions in ⁸Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of > 5 σ . This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of $16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst}) \text{ MeV}/c^2$ and $J^{\pi} = 1^+$ was created.

⁸BE SPECTRUM

Tilley et al. (2004); National Nuclear Data Center, http://www.nndc.bnl.gov/nudat2/

THE ⁸BE EXPERIMENT AT MTA ATOMKI

- 1 μ A proton beam hits thin ⁷Li targets
- $E_p = 1.03 \text{ MeV} \rightarrow {}^8\text{Be}*$ resonance, which then decays:
 - Hadronic: B(p ⁷Li) ≈ 100%
 - Electromagnetic: $B(^{8}Be \gamma) \approx 1.5 \times 10^{-5}$
 - Internal Pair Conversion: B(⁸Be e⁺ e⁻) ≈ 5.5 x 10⁻⁸

THE ⁸BE IPC ANOMALY

- Measure the e^+e^- opening angle θ (and invariant mass)
- Background fluctuation probability: 5.6 x 10⁻¹² (6.8σ)
- Best fit to new particle: $\chi^2/dof = 1.07$

 $m = 16.7 \pm 0.35 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV}$

 $B(^{8}Be^{*} \rightarrow ^{8}Be X) / B(^{8}Be^{*} \rightarrow ^{8}Be \gamma) = 5.6 \times 10^{-6}$

SIGNAL CHARACTERISTICS

- The excess consists of hundreds of events in each bin; this is not a statistical fluctuation, clearly all possible explanations (nuclear physics, experimental setup, particle physics) should be explored
- The excess is not a "last bin" effect: bump, not smooth excess
- In scan through p resonance energy, excess rises and falls
- Excess is seen in the expected event subsamples: events with symmetric e⁻ and e⁺ energies, events passing the 18 MeV gate
- Peaks in opening angle θ and invariant mass correspond; required for particle interpretation, not for all backgrounds
- Comparable excess not seen for 17.64 MeV state; explainable by phase-space suppression for > 17 MeV particle

INTERESTING QUESTIONS

- What kinds of neutral bosons are possible?
- What are the required parton-level couplings?
- Is this consistent with all other experiments?
- Is there an anoamly-free model that predicts this?
- What other experiments can check this?

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016) Gu, He (2016); Chen, Liang, Qiao (2016); Jia, Li (2016); Kitahara, Yamamoto (2016); Ellwanger, Moretti (2016)

SPIN 0 NEUTRAL BOSONS

SCALARS "DARK HIGGS"

- J^P Assignments: $1^+ \rightarrow 0^+ 0^+$
- L Conservation:
 L = 1
- Parity Conservation: $P = (-1)^{L} = 1$
- Forbidden in parityconserving theories

PSEUDOSCALARS "AXION-LIKE PARTICLES"

 Requires re-analysis of constraints on aγγ couplings Ellwanger, Moretti (2016)

SPIN-1 GAUGE BOSONS

- What quark-, nucleon-level couplings are required? In general requires calculating nuclear matrix elements
- But for 1⁻ vector, in the EFT, there is only 1 operator $\frac{1}{\Lambda} \epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}{}^{8} \text{Be}_{\nu}^{*} - \partial_{\nu}{}^{8} \text{Be}_{\mu}^{*} \right) X_{\alpha\beta}{}^{8} \text{Be}$
- Neglecting isospin mixing, $\Gamma(^{8}\text{Be}^{*} \to ^{8}\text{Be}X) = \frac{(e/2)^{2}(\varepsilon_{p} + \varepsilon_{n})^{2}}{3\pi\Lambda^{2}} |\mathcal{M}|^{2}|\vec{p}_{X}|^{3}$
- The nuclear matrix elements and Λ cancel in the ratio $\frac{B(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}X)}{B(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}\gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\vec{p}_{X}|^{3}}{|\vec{p}_{\gamma}|^{3}} \approx 5.6 \times 10^{-6}$

where $\varepsilon_p = 2\varepsilon_u + \varepsilon_d$ and $\varepsilon_n = \varepsilon_u + 2\varepsilon_d$ are the nucleon X-charges (in units of e)

EFFECT OF ISOSPIN MIXING

 There are strong indications that the ⁸Be 1⁺ states are isospin-mixed

$$\Psi_J^a = \alpha_J \Psi_{J,T=0} + \beta_J \Psi_{J,T=1} \qquad \alpha_1 = 0.21(3)$$

$$\Psi_J^b = \beta_J \Psi_{J,T=0} - \alpha_J \Psi_{J,T=1} \qquad \beta_1 = 0.98(1)$$

Barker (1966); Oothoudt, Garvey (1977); Pastore, Wiringa, Pieper, Schiavilla (2014)

- In general, this can have a large effect on the width, changing $\frac{\Gamma(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}X)}{\Gamma(^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be}\gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\mathbf{k}_{X}|^{3}}{|\mathbf{k}_{\gamma}|^{3}}$ to $\frac{\Gamma_{X}}{\Gamma_{\gamma}} = |-0.09 (\varepsilon_{p} + \varepsilon_{n}) + 1.09 (\varepsilon_{p} - \varepsilon_{n})|^{2} \frac{|\mathbf{k}_{X}|^{3}}{|\mathbf{k}_{\gamma}|^{3}}$
- In the protophobic limit, however, the effect is O(10%)

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

THE REQUIRED PARTON-LEVEL COUPLINGS

 To get the right signal strength:

 $|\varepsilon_u + \varepsilon_d| \approx 3.7 \times 10^{-3}$

 The observed width is completely dominated by experimental effects, but the decay must happen 1 within ~ 1 cm:

$$|\varepsilon_e| \gtrsim 1.3 \times 10^{-5}$$

This cannot be a dark photon

PROTOPHOBIA

 The dominant constraints are null results from searches for π⁰ → X γ → e⁺ e⁻ γ

- Eliminated if $Q_u X_u Q_d X_d \approx 0$ or $2X_u + X_d \approx 0$ or $X_p \approx 0$
- A protophobic gauge boson with couplings to neutrons, but suppressed couplings to protons, can explain the ⁸Be signal without violating other constraints

5TH FORCE EXPLANATIONS OF ⁸BE

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

COUPLING CONSTRAINTS

- Consider all constraints and also the region favored by (g-2)μ
- In the end, require ε_u , $\varepsilon_d \sim \text{few } 10^{-3} \text{ with cancelation to } \sim 10\%$ for protophobia, $10^{-4} < \varepsilon_e < 10^{-3}$, and $|\varepsilon_e \varepsilon_v|^{1/2} < 3 \ge 10^{-4}$

ANOMALY-FREE MODELS

Feng, Fornal, Galon Gardner, Smolinsky, Tait, Tanedo (2016)

- How strange is protophobia? Z is protophobic at low energies, as is any gauge boson coupling to B-Q or B-L-Q
- Example: gauge the $U(1)_{B-L}$ global symmetry of the SM. This is anomaly-free with the addition of 3 sterile neutrinos
- Generically the B-L boson kinetically mixes with the photon:

$$\varepsilon_{u} = \frac{1}{3}\varepsilon_{B-L} + \frac{2}{3}\varepsilon \qquad \varepsilon_{\nu} = -\varepsilon_{B-L}$$
$$\varepsilon_{d} = \frac{1}{3}\varepsilon_{B-L} - \frac{1}{3}\varepsilon \qquad \varepsilon_{e} = -\varepsilon_{B-L} - \varepsilon$$

• For $\mathcal{E} \approx -\mathcal{E}_{B-L}$, we get B-L-Q charges: $\mathcal{E}_u \approx \mathcal{E}/3$ and $\mathcal{E}_d \approx -2\mathcal{E}/3$ (protophobia) and $\mathcal{E}_e << \mathcal{E}_{u,d}$. The neutrino X-charge can be suppressed by mixing with vector-like leptons

FUTURE TESTS: NUCLEAR PHYSICS

- The most direct test would be to look for other nuclear IPC transitions
- The ⁸Be 18.15 and 17.64 transitions are among the largest known with discrete gamma rays
- Are others possible?
 E.g., ¹⁰B (19.3), ¹⁰Be (17.8)

FUTURE TESTS: "DARK PHOTON" EXPTS

•

CONCLUSIONS

- 5th forces are motivated by unification and dark matter and may be probed in "intensity frontier" experiments and nuclear decays
- There is currently a 6.8σ anomaly in ⁸Be* IPC decays. A particle interpretation yields a χ²/dof = 1.07 best fit with m = 16.7 ± 0.35 (stat) ± 0.5 (sys) MeV
 B(⁸Be* → ⁸Be X) / B(⁸Be* → ⁸Be γ) = 5.6 x 10⁻⁶
- The data are consistent with a protophobic gauge boson that mediates a 5th force and explains (g-2)_μ
- In simple SM extensions, the gauge boson is a U(1)_{B-L} or U(1)_B gauge boson that kinetically mixes with the photon
- Many opportunities for near future experimental tests