# WIMPS: AN OVERVIEW, CURRENT CONSTRAINTS, AND WIMP-LIKE EXTENSIONS

Debates on the Nature of Dark Matter

The 8<sup>th</sup> Harvard-Smithsonian Conference on Theoretical Astrophysics

Jonathan Feng, UC Irvine and CERN

19 May 2014

# **OVERVIEW**



We've learned a lot about the Universe in recent years, but there is still a lot missing

#### In particular, either

- There is a huge problem with our standard theory of particle physics, or
- There is a huge problem with our standard theory of gravity,
- Or both!
- Here assume it's particles: Dark Matter: 23% ± 4% Dark Energy: 73% ± 4% Normal Matter: 4% ± 0.4% Neutrinos: 0.2% (Σm<sub>v</sub>/0.1eV)

# THE WEAK SCALE

Much of the attention has focused on WIMPs. Why?

• Fermi's constant  $G_F$  introduced in 1930s to describe beta decay

 $n \rightarrow p \ e^- \overline{v}$ 

•  $G_F \sim 10^{-5} \text{ GeV}^{-2} \rightarrow \text{ a new mass}$ scale in nature

 $m_{weak} \sim 100 \text{ GeV}$ 

• We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale



# THE WIMP MIRACLE



• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

## WIMP STABILITY

- The WIMP Miracle is very well appreciated, and it is a quantitative feature. But its success relies on some less well-advertised qualitative features
- First, the WIMP must be stable
- How natural is this? A priori, not very: the only stable particles we know about are very light



Standard Model \_\_\_\_\_\_ Particles

Stable

# LEP'S COSMOLOGICAL LEGACY



In some cases, there are even stronger reasons to exclude these 4-particle interactions (e.g., proton decay in SUSY)

• Simple solution: impose a discrete parity, so all interactions require *pairs* of new particles. This also makes the lightest new particle stable:

LEP constraints ↔ Discrete Symmetry ↔ Stability

Cheng, Low (2003); Wudka (2003)

## WIMP NEUTRALITY

- WIMPs must also be neutral
- How natural is this? Again, a priori, not very: what is the chance that the lightest one happens to be neutral?
- In fact, in many cases (SUSY, extra dims, ...), masses are "proportional" to couplings, so neutral particles are the lightest



Bottom line: WIMPs, new particles that are *stable* and *neutral* with  $\Omega \sim 0.1$ , appear in many models of new particle physics

Correct relic density  $\rightarrow$  Efficient annihilation then



Efficient scattering now (Direct detection)

## **DIRECT DETECTION**



Look for normal matter recoiling from WIMP collisions in detectors deep underground

Dark matter elastically scatters off nuclei

Nuclear recoils detected by phonons, scintillation, ionization, ...

Attisha

# **CURRENT STATUS AND FUTURE PROSPECTS**



## **MOORE'S LAW FOR DARK MATTER**

#### Evolution of the WIMP–Nucleon $\sigma_{SI}$



# **INDIRECT DETECTION**

- Dark matter may pair annihilate in our galactic neighborhood to
  - Photons
  - Neutrinos
  - Positrons
  - Antiprotons
  - Antideuterons



• The relic density provides a target annihilation cross section  $\langle \sigma_{\rm A} \, v \rangle \sim 3 \, x \, 10^{-26} \, {\rm cm}^3/{\rm s}$ 



## **ROBUSTNESS OF THE TARGET CROSS SECTION**

Relative to direct, indirect rates have larger astrophysical uncertainties, but smaller particle physics uncertainties



### **INDIRECT DETECTION: PHOTONS**

#### Current: Veritas, Fermi-LAT, HAWC, and others







### **INDIRECT DETECTION: PHOTONS**

#### Future: Cerenkov Telescope Array

#### Low-energy section: 4 x 23 m tel. (LST) (FOV: 4-5 degrees) energy threshold of some 10s of GeV

23 x 12 m tel. (MST) FOV: 7-8 degrees best sensitivity in the 100 GeV–10 TeV domain

Core-energy array:

High-energy section: 30-70 x 4-6 m tel. (SST) - FOV: ~10 degrees 10 km<sup>2</sup> area at multi-TeV energies

#### First Science: ~2016 Completion: ~2019

## **INDIRECT DETECTION: PHOTONS**



- Fermi-LAT sensitive to light WIMPs with the target annihilation cross section for certain annihilation channels
- CTA extends the reach to WIMP masses ~ 10 TeV

## DARK MATTER AT COLLIDERS



# WIMP-LIKE EXTENSIONS



## **SUPERWIMPS**

Feng, Rajaraman, Takayama (2003)

- An example: Gravitinos in supersymmetry with  $m_{\tilde{G}} \sim m_{SUSY}$
- Ĝ not LSP: WIMPs

• Ĝ LSP: SuperWIMPs



WIMP-like: TeV masses, same particle models, superWIMP inherits the right relic density

But completely different: superweakly-interacting, warm DM, BBN, long-lived charged particles at LHC, ...

### **EXCITING DARK MATTER**

Finkbeiner, Weiner (2007)

- WIMP dark matter X with a nearly degenerate state X\*
- X\* created in collisions with  $m_X v^2 > \Delta m \sim keV$  to MeV



 WIMP-like: TeV masses, correct thermal relic density But completely different: dark photons to mediate upscatter, de-excitation → INTEGRAL, 3.5 keV line, ...  All evidence for dark matter is gravitational.
Perhaps it's in a hidden sector, composed of particles without EM, weak, strong interactions



- A priori there are both pros and cons
  - Lots of freedom: interesting astrophysics, etc.
  - Too much freedom: no connections to known problems
  - No relation to WIMPs and the WIMP miracle

Spergel, Steinhardt (1999); Foot (2001)

# WIMPLESS DARK MATTER





 If this applies also in hidden sectors, these will have DM with the correct relic density

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

- Restores
  - Particle physics motivations
  - Structure, predictivity
  - WIMP miracle without WIMPs



Feng, Kumar (2008)

# WIMPLESS SELF-INTERACTING DARK MATTER

Feng, Shadmi (2011), Boddy, Feng, Kaplinghat, Tait (2014)

- A simple example: pure SU(N) with hidden gluons g and gluinos  $\tilde{g}$
- At early times, interaction is weak, ~1-10 TeV g̃ freezeout with correct Ω At late times, interaction is strong, glueballs (gg) and glueballinos (gg̃) form and self-interact with σ<sub>T</sub>/m ~ 0.1 cm<sup>2</sup>/g ~ 0.1 barn/GeV

Rocha et al. (2012), Peter et al. (2012); Vogelsberger et al. (2012); Zavala et al. (2012)



- WIMP-like: TeV-masses with correct thermal relic density
- But completely different: self-interacting, multi-component dark matter

# **CONCLUSIONS**

#### • Overview

- WIMPs, new, stable, neutral particles with the right thermal relic density, are motivated by particle physics alone
- The fact that they might be dark matter is hard to ignore

#### Current Constraints

- Direct Detection: approaching the neutrino background
- Indirect Detection: approaching the target annihilation cross section
- Colliders: LHC probes deeper into the weak scale

#### WIMP-like Extensions

- SuperWIMPs, excited dark matter, WIMPless dark matter, and many others
- WIMP-like, but predict a rich variety of observable phenomena