DARK MATTER AND THE LHC

24 April 2014 Technion Colloquium

UC Irvine Jonathan Feng

INTRODUCTION

- The Higgs discovery at the LHC was a landmark achievement
- It capped a 50-year saga and completed the particle content of the Standard Model
- But many expect there are more particles to discover, and the Higgs may be just the opening act for the LHC. Why?

EVIDENCE FOR DARK MATTER

- Our understanding of the Universe has been transformed in recent years
- There is now strong evidence that normal (atomic) matter is not all the matter in the Universe:

Dark Matter: $23\% \pm 4\%$ Dark Energy: $73\% \pm 4\%$ Normal Matter: $4\% \pm 0.4\%$ Neutrinos: $0.2\% (\Sigma m_v/0.1 eV)$

 To date, all evidence for dark matter is from its gravitational effects; to identify it, we need to see it in other ways

A PRECEDENT

- In 1821 Alexis Bouvard found anomalies in the observed path of Uranus and suggested they could be caused by dark matter
- In 1845-46 Urbain Le Verrier determined the expected properties of the dark matter and how to find it. With this guidance, Johann Gottfried Galle discovered dark matter in 1846.
- Le Verrier wanted to call it "Le Verrier," but it is now known as Neptune, the farthest known planet (1846-1930, 1979-99, 2006-present)

DARK MATTER

Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Unambiguous evidence for new physics

WHAT COULD DARK MATTER BE?

DARK MATTER CANDIDATES

- Clearly the observational constraints are no match for the creativity of theorists
- Masses and interaction strengths span many, many orders of magnitude
- But not all candidates are similarly motivated

HEPAP/AAAC DMSAG Subpanel (2007)

THE WEAK MASS SCALE

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

• $G_F \approx 1.1 \cdot 10^{-5} \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

FREEZE OUT

(1) Assume a new heavy particle X is initially in thermal equilibrium: $XX \leftrightarrow qq$ (2) Universe cools: $XX \stackrel{\rightarrow}{\leftarrow} qq$ (3) Universe expands: $XX \ddagger \bar{q}q$

Zeldovich et al. (1960s)

THE WIMP MIRACLE

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMPS FROM SUPERSYMMETRY

The classic WIMP: neutralinos predicted by supersymmetry Goldberg (1983); Ellis et al. (1983)

Supersymmetry: extends rotations/boosts/translations, string theory, unification of forces,... For every known particle X, predicts a partner particle \tilde{X}

Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$

Particle physics alone $\rightarrow \chi$ is lightest supersymmetric particle, stable, weakly-interacting, mass ~ 100 GeV. All the right properties for WIMP dark matter!

ASYMMETRIC DARK MATTER

- The SM matter relic density was not generated by freeze-out, but by an asymmetry
- If the dark matter relic density was generated in a similar way,

 $n_{DM} \sim n_B$ \downarrow $m_{DM} / m_B \sim \Omega_{DM} / \Omega_B \sim 5$ Asymmetric DM $\rightarrow m_{DM} \sim 5$ GeV "Light WIMPs"

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

Efficient scattering now (Direct detection)

DIRECT DETECTION

Look for normal matter recoiling from WIMP collisions in detectors deep underground

Dark matter elastically scatters off nuclei

Nuclear recoils detected by phonons, scintillation, ionization, ...

CURRENT STATUS

There are claimed signals: Collision rate should change as Earth's velocity adds with the Sun's \rightarrow annual modulation

Drukier, Freese, Spergel (1986)

DAMA: 9σ signal with T ~ 1 year, max ~ June 2

2-6 keV

CURRENT STATUS AND FUTURE PROSPECTS

MOORE'S LAW FOR DARK MATTER

Evolution of the WIMP–Nucleon σ_{SI}

INDIRECT DETECTION

- Dark matter may pair annihilate in our galactic neighborhood to
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons

 The relic density provides a target annihilation cross section (σ_A v) ~ 3 x 10⁻²⁶ cm³/s

FOR EXAMPLE: INDIRECT DETECTION BY PHOTONS

Current: Veritas, Fermi-LAT, HAWC, and others

INDIRECT DETECTION: PHOTONS

Future: Cerenkov Telescope Array

Low-energy section: 4 x 23 m tel. (LST) (FOV: 4-5 degrees) energy threshold of some 10s of GeV

23 x 12 m tel. (MST) FOV: 7-8 degrees best sensitivity in the 100 GeV–10 TeV domain

Core-energy array:

High-energy section: 30-70 x 4-6 m tel. (SST) - FOV: ~10 degrees 10 km² area at multi-TeV energies

First Science: ~2016 Completion: ~2019

INDIRECT DETECTION: PHOTONS

- Fermi-LAT has excluded a light WIMP with the target annihilation cross section for certain annihilation channels
- CTA extends the reach to WIMP masses ~ 10 TeV

PARTICLE COLLIDERS

LHCb

ATLAS

ALICE

CMS -

LHC: $E_{COM} = 7-14$ TeV, 10^5-10^8 top quarks/yr [Tevatron: $E_{COM} = 2$ TeV, 10^2-10^4 top quarks/yr]

DARK MATTER AT COLLIDERS

DARK MATTER AT COLLIDERS

DM Effective Theories (Bare Bones Dark Matter)

Produce DM directly, but in association with something else so it can be seen: Mono- γ , jet,W,Z,h,b,t

Birkedal, Matchev, Perelstein (2004) Feng, Su, Takayama (2005)

Can systematically classify all possible $qq\chi\chi$ interactions

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5 q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu (2010) Bai, Fox, Harnik (2010)

24 April 14

THE FUTURE

If there is a signal, what do we learn?

 Cosmology and dark matter searches can't prove it's SUSY Particle colliders can't prove it's DM

Lifetime > 10^{-7} s \rightarrow 10^{17} s ?

DARK MATTER COMPLEMENTARITY

- Before a signal: Different experimental approaches are sensitive to different dark matter candidates with different characteristics, and provide us with different types of information – complementarity!
- After a signal: we are trying to identify a quarter of the Universe: need high standards to claim discovery and follow-up studies to measure properties

COMPLEMENTARITY: FULL MODELS

pMSSM 19-parameter scan of SUSY parameter space

Different expts probe different models, provide cross-checks

BEYOND WIMPS

 All evidence for dark matter is gravitational.
 Perhaps it's in a hidden sector, composed of particles without EM, weak, strong interactions

- A priori there are both pros and cons
 - Lots of freedom: interesting astrophysics, etc.
 - Too much freedom: no connections to known problems
 - No WIMP miracle

24 April 14

10⁻⁶

 10^{-4}

- Feng, Kumar (2008)
- Self-interactions: Observations vs. simulations motivate strongly selfinteracting DM:

 $\sigma_T/m \sim 0.1 \text{ cm}^2/g \sim 0.1 \text{ barn/GeV}$

Rocha et al. (2012), Peter et al. (2012); Vogelsberger et al. (2012); Zavala et al. (2012)

HIDDEN DM: SOME RECENT DEVELOPMENTS

WIMPless Miracle: In many supersymmetric hidden sectors, $m_{\chi} \sim g_{\chi}^2$, which leaves the relic density invariant

Restores

- Particle physics motivations
- Structure, predictivity
- The miracle: SUSY hidden sectors automatically have DM with the right Ω

10⁻²

 10^{0}

m_x [GeV]

Feng 29

 10^{4}

 10^{2}

DM FROM QCD-LIKE HIDDEN SECTOR

Feng, Shadmi (2011), Boddy, Feng, Kaplinghat, Tait (2013)

30

- WIMPless miracle → weak interactions
 Self-interactions → strong interactions
- A natural possibility: QCD-like hidden sectors
- For example, SUSY with hidden gluons g and gluinos \tilde{g}
 - At early times, interaction is weak, ~10 TeV gluinos freezeout with the correct relic density
 - At late times, interaction is strong, $\Lambda \sim 1$ MeV, glueball (gg) and glueballino (\tilde{gg}) bound states form strongly self-interacting dark matter

CONCLUSIONS

Particle Dark Matter

- Central topic at the interface of cosmology and particles
- Both cosmology and particle physics → new particles at the weak scale ~ 100 GeV

Candidates

- WIMPs: Many well-motivated candidates
- Hidden dark matter: Similar motivations, but qualitatively new properties
- Many others
- LHC is coming back on line in 2015, direct and indirect detection, astrophysical probes are improving rapidly – this field will be transformed in the next few years