DARK MATTER AND ITS PARTICLE PROPERTIES

Jonathan Feng, UC Irvine

Dark Matter in Southern California (DaMaSC 2) Keck Institute for Space Studies, Caltech

DARK MATTER CANDIDATES

OUTLINE

- WIMPs
 - Symmetric and Asymmetric
 - Direct Detection
 - Indirect Detection
 - Colliders
 - Complementarity
- Axions
- Warm Dark Matter
 - Sterile Neutrinos
 - SuperWIMPs
- Self-Interacting Dark Matter
 - Hidden Sector Dark Matter

THE WIMP MIRACLE

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

STABILITY

 This all assumes the WIMP is stable

How natural is this?

New Particle States

LEP'S COSMOLOGICAL LEGACY

• Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable:

LEP constraints ↔ Discrete Symmetry ↔ Stability

Cheng, Low (2003); Wudka (2003)

 The result: new, stable particles at the weak scale are predicted in many models, motivates DM with m_{DM} ~ 5 GeV

ASYMMETRIC DARK MATTER

- The SM matter relic density was not generated by freeze-out, but by an asymmetry
- If the dark matter relic density was generated in a similar way

$$n_{DM} \sim n_B$$

 \downarrow
 $m_{DM} / m_B \sim \Omega_{DM} / \Omega_B \sim 5$

Asymmetric DM motivates "light WIMPs" with $m_{DM} \sim 5 \text{ GeV}$

DIRECT DETECTION

CURRENT STATUS AND FUTURE PROSPECTS

Snowmass Cosmic Frontier

INDIRECT DETECTION

- Dark matter may pair annihilate in our galactic neighborhood to
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons

 The relic density provides a target annihilation cross section (σ_A v) ~ 3 x 10⁻²⁶ cm³/s

AN EXAMPLE: PHOTONS

Current: Veritas, Fermi-LAT, HAWC, Magic, HESS, ...

Future: Cerenkov Telescope Array (CTA)

23 x 12 **Low-energy section:** 4 x 23 m tel. (LST) (FOV: 4-5 degrees) energy threshold of some 10s of GeV

Core-energy array: 23 x 12 m tel. (MST) FOV: 7-8 degrees best sensitivity in the 100 GeV–10 TeV domain High-energy section: 30-70 x 4-6 m tel. (SST) - FOV: ~10 degrees

10 km² area at multi-TeV energies

First Science: ~2016

Completion: ~2019

INDIRECT DETECTION: PHOTONS

- Fermi-LAT has excluded a light WIMP with the target annihilation cross section for certain annihilation channels
- CTA extends the reach to WIMP masses ~ 10 TeV

DARK MATTER AT COLLIDERS

 Full Models (e.g., pMSSM Supersymmetry)

 DM Effective Theories (Bare Bones Dark Matter)

Mono-whatever

DARK MATTER COMPLEMENTARITY

- Before a signal: Different experimental approaches are sensitive to different dark matter candidates with different characteristics, and provide us with different types of information – complementarity!
- After a signal: we are trying to identify a quarter of the Universe: need high standards to claim discovery and follow-up studies to measure properties

COMPLEMENTARITY: FULL MODELS

pMSSM 19-parameter scan of SUSY parameter space

Different SUSY models are probed by different experiments

AXIONS

 Strongly motivated by the strong CP problem

$$\theta_{\rm CP} \frac{g_3^2}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G^{\alpha}_{\mu\nu} G^{\alpha}_{\rho\sigma}$$

Current bound from electric dipole moments is

 $\theta_{\rm CP} < 10^{-10}$

 Motivates introduction of the axion field, which couples to two photons

AXION PROPERTIES

10⁻⁴

10⁻⁶

10⁻⁸

10⁻¹⁰

Laser Experiments

Solar-Magnetic

Telescope

Solar-Germanium

HB Stars

Many production mechanisms, but all yield cold dark matter

Parameter space constrained by

Supernova cooling, etc.

STERILE NEUTRINOS

• Strongly motivated by the fact that neutrinos have mass

$$\mathcal{L}_{\nu_R} = \bar{\nu}^{\alpha} i \not\!\!\!D \nu^{\alpha} - \left(\lambda_{i\beta}^{\nu} \bar{L}^i \nu^{\beta} \tilde{\phi} + \text{h.c.}\right) - \frac{1}{2} M_{\alpha\beta} \bar{\nu}^{\alpha} \nu^{\beta}$$

No SM gauge interactions, but they mix with the active neutrinos

$$m_{\nu} = \begin{pmatrix} 0 & \lambda_{i\beta} \langle \phi \rangle \\ \lambda_{\alpha j}^* \langle \phi \rangle & M_{\alpha \beta} \end{pmatrix} \qquad \nu_s = \cos \theta \, \nu_R + \sin \theta \, \nu_L$$

• Correct relic density for ~keV masses

$$\Omega_{\nu_s} \approx 0.2 \, \frac{\sin^2 2\theta}{10^{-8}} \left[\frac{m_s}{3 \text{ keV}} \right]^{1.8}$$

STERILE NEUTRINO PROPERTIES

Decays may be detected as X-ray lines

Feng 19

HIDDEN SECTOR DARK MATTER

 Dark matter could be in a hidden "dark sector," with no SM couplings; this is viable and perhaps even natural, since all solid evidence for DM is gravitational

- However, a priori, it's a bit unsatisfying
 - Missing the particle physics motivations of many popular DM candidates
 - Too much model-building freedom, lack of predictivity
 - Makes no use of the WIMP miracle

MOTIVATIONS FOR HIDDEN DARK MATTER

WIMPless Miracle: Consider hidden sectors in SUSY models. In many models, $m_X \sim g_X^2$, which leaves the relic density invariant

Restores

- Particle physics motivations
- Structure, predictivity
- The miracle: SUSY hidden sectors automatically have DM with the right Ω

Feng, Kumar (2008); Feng, Tu, Yu (2009)

Rocha et al. (2012), Peter et al. (2012);

Vogelsberger et al. (2012); Zavala et al. (2012)

• Self-interactions: Observations vs. simulations motivate self-interacting DM with $\sigma_T/m \sim 0.1-1 \text{ cm}^2/\text{g}$ (or barn/GeV)

Feng 21

SELF-INTERACTING DM FROM SU(N) HIDDEN SECTOR

Boddy, Feng, Kaplinghat, Tait (2013)

- WIMPless miracle requires weak interactions, self-interactions require strong interactions
- A natural possibility to consider is a non-Abelian hidden sector with weak coupling at high scales and early times, and strong coupling at low scales now (cf. QCD)

Feng, Shadmi (2011)

$$V(r) = -\frac{\alpha}{r} \exp(-\Lambda r)$$

$$\sigma_T = \int d\Omega (1 - \cos \theta) \frac{d\sigma}{d\Omega}$$

Feng, Kaplinghat, Yu (2010); Tulin, Yu, Zurek (2013)

SELF-INTERACTING DM FROM SU(N) HIDDEN SECTOR

- An extremely simple possibility: AMSB with a pure SU(N) hidden sector (just hidden gluons and gluinos)
 - ~1-10 TeV gluinos freezeout with the correct relic density
 - At Λ ~ 10 MeV, (gg̃) and (gg) bound states form
 - (gg̃) dark matter strongly self-interacts through (gg) exchange

SUMMARY

- Many interesting dark matter candidates
- Vanilla WIMPs are still very well motivated, as are other cold dark matter candidates, such as axions
- But there are also well-motivated warm dark matter candidates and self-interacting dark matter candidates
- Astrophysics may motivate specific candidates and provides unique probes of particle properties