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Intro: part |

« Dark matter is six times as prevalent as normal matter in
the Universe, but its identity is unknown. Dark matter is a
grand challenge for fundamental physics and astronomy.
Its mere existence implies that our inventory of the basic
building blocks of nature is incomplete, and uncertainty
about its properties clouds all attempts to understand
how the universe evolved to its present state and how it
will evolve in the future. At the same time, the field of
dark matter will be transformed in the coming decade.
This prospect has drawn many new researchers to the
field, which is now characterized by an extraordinary
diversity of approaches unified by the common goal of
discovering the identity of dark matter.



Intro: part I

* As we will discuss, a compelling solution to the dark
matter problem requires synergistic progress along many
lines of inquiry. Our primary conclusion is that the
diversity of possible dark matter candidates requires a
balanced program based on four pillars: direct detection
experiments that look for dark matter interacting in the
lab, indirect detection experiments that connect lab
signals to dark matter in the galactic halos, collider
experiments that elucidate the particle properties of dark
matter, and astrophysical probes that determine how
dark matter has shaped the evolution of large-scale
structures in the Universe.



Intro: part Il

* In this Report we summarize the many dark matter
searches currently being pursued in each of these four
approaches. The essential features of broad classes of
experiments are described, each with their own
strengths and weaknesses. The goal of this Report is
not to prioritize individual experiments, but rather to
highlight the complementarity of the four general
approaches that are required to sustain a vital dark
matter research program. Complementarity also exists
on many other levels,of course; in particular,
complementarity within each approach is also important,
but will be addressed by the Snowmass Cosmic Frontier
subgroups that focus on each approach.
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What is dark matter?

Overwhelming observational evidence for it
— 6 times as prevalent as normal matter

We are completely ignorant about its properties

— mass, spin, lifetime, gauge quantum numbers
— there could even be several DM species

It could couple to any of the SM particles
— Including hidden sector particles

There are many possibilities, including:

— WIMPs (studied by CF1, CF2)

— Asymmetric DM (CF1)

— Axions (CF3)

— Sterile neutrinos (CF3)

— Hidden sector DM (CF4) 6



DM interactions vs. DM probes

* For the purposes of this report, DM candidates are
categorized according to their basic interactions
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Appendices: lists of experiments

DIRECT DETECTION

TABLE I: Current and planned direct detection experiments.

INDIRECT DETECTION

COLLIDERS

TABLE II: Current and planned indirect detection experiments.

TABLE III: Current and proposed particle colliders.

Status | Experiment Target Technique | Location|  Major Support | Comments Status [Experiment [Target [Location  [Major Support Comments . - e p o .
Current LUX 350 kg liquid Xe | Tlon., Scint. | SURF | DOE, NSF, European gy . - — Status Collider | Type | Ecom, Luminosity | Major Support | Comments
Current | AMS etjem,  |ISS NASA Magnet Spectrome:
Planned LZ 7 ton liquid Xe Ton. SURF | DOE, NSF, Buropean anti-nuclei ter, Running Current LHC pp | 8TeV, 20 fb* DOE, NSF
Current| Xenon100 62 kg liquid Xe Ton. LNGS | DOE, NSF, European Fermi Photons, [Satellite  [NASA, DOE Pair Telescope and Upcoming LHC pp | 14 TeV, 300 fb~! DOE, NSF
Planned|  XenonlT 3 ton liquid Xe Ton., Scint. | LNGS | DOE, NSF, European etfe” Cbahjrinwtm: Run- Proposed | HL LHC pp |14 TeV, 3000 b
Planned| PandaX-1 1.2 ton liquid Xe | Ton,, Scint. | Jinpin Chinese L8 ODOSe 'LHC WV
Planned|  PandaX-2 3 ton I ?id Xo Ton.. Scint ]ml:mg Chines HESS Photons, |Namibia |German BMBF, Max Planck Society,| Atmospheric Proposed VLHC pp 33-100 TeV
B — Con ZAwe 2 o 2. | PIE ek e French Ministry for Research, CNRS-|Cherenkov  Tele- Proposed | Higgs Factory | e*e~ 250 GeV
Current] XMASS-T | 800 kg liquid Xe Scint. Kamioka Japanese IN2P3. UK PPARC. South Afica scope (ACT), Proposed | ILC, CLIC 053 Tov
Planned 5 ton liquid Xe Scint. Kamioka Japanese Running b T [Nvon Collider o™ S Tev
Current| DarkSide50 | 50 kg liquid Ar LNGS | DOE, NSF, European TccCube/  |Neutrinos |Antarctica |NSF, DOE, International *Belgium,|lce  Cherenkov, roposed |Vuon Loider|u ad
Planned| DarkSide-G2 | 5 ton liquid Ar LNGS | DOE, NSF, European DeepCore Germany, Japan, Sweden) Running TO BE CONTINUED
Current | ADM 1 ton Tiquid Ar Canfranc European MAGIC  [Photons, |La Palma |German BMBF and MPG, INFN,|ACT, Running
e e Nkl PAN
Current | MiniCLEAN |500 kg liquid Ar/Ne|  Scint.  |SNOLab DOE /e Swiss SNF, Spanish MICINN, CPAN,
Bulgarian NSF, Academy of Finland,
Current| DEAP-3600 | 3.6 ton liquid Ar Scint. SNOLab Canadian DFG. Polish MNiSzW
Planned] CLEAN |40 ton liquid Ar/Ne Scint. SNOLab DOE PAMELA | /e Satellite
Current| COUPP-60 CFsl Bubbles SNOLab DOE, NSF VERITAS |Photons, |Arizona, |DOE, NSF, SAO ACT, Running
Planned| COUPP-1T CFyl Bubbles | SNOLab DOE, NSF et/em USA
Current| PICASSO Bubbles | SNOLab Canadian ANTARES |Neutrinos |Mediter-  |France, Italy, Germany, Netherlands,|Running
Current| SIMPLE Bubbles | Canfranc European rancan \W@ifigain, Russia, and Mordigh i
Current| SuperCDMS 10 ke Ge Ton.. Phonons | Sondan DOE. NSF Planned[CALET _ [e /e~ 1SS Japan JAXA, Ttaly ASI, NASA Calorimeter
3 CTA Photons ground- International (MinCyT, CNEA, CON- ACT
X c : : a N
P:lanned SupexCD.MS 100 kg F}e Ton., Phonons | Soudan DOE, NSF based \ET CNRSINSU, CNRS-IN2P3,
Current| Edelweiss 4 kg Ge Ton., Phonons | Modane European (TBD)  |bfa.CHA, ANR, MPI, BMBF, DESY,
Current| CRESST 10 kg CaWO, _|Scint., Phonons| LNGS European Helmholtz Association, MIUR, NOVA
Planned EURECA Ge, CaWOy NWO, Poland, MICINN, CDTI, CPAN,
Current]  CoGeNT Ge Ton Soudan DOE Swedish Research Council, Royal Swedish
E— — — - . Academy of Durham UK,
Current] TEXONO Ge Ton. Chinese NeA HOE
Current | DAMA/LIBRA Nal Buropean GAMMA- |Photons ~ |Satellite  |Russian _ Space  Agency,  Russian|Pair Telescope
Current| ELEGANT Nal Japanese 400 Academy of Sciences, INFN
Planned DM-Ice Nal GAPS Anti- Balloon NASA, JAXA TOF, X-ray and
Planned CINDMS Nal Chinese deuterons | (LDB) Pion detection
Current KIMS Csl HAWC Photons, |Sierra Ne-|NSF/DOE Water  Cherenkov,
Gl DRIFT on etfem gra Air Shower Surface
: Array
Current| EBMTPC Ton. WIPP TceCube/  |Neutrinos |Antarctica |NSF, Germany, Sweden, Belgium Tce Cherenkov
Planned|  NEXT Xe gas Ton., Scint. |Canfranc PINGU
Planned| ~ MIMAC Ton. Modane KM3NeT |Neutrinos |Mediter- |ESFRI, including France, Italy, Greece,| Water Cherenkov
Planned |Superfiuid He-4 ranean  |Netherlands, Germany, Ireland, Roma-
Planned DNA DNA nia, Spain, UK, Cyprus
TO BE CONTINUED ORCA Neutrinos |Mediter-  |ESFRI, including France, Italy, Greece,| Water Cherenkov
ranean  |Netherlands, Germany, Treland, Roma-

nia, Spain, UK, Cyprus

TO BE CONTINUED




How to illustrate complementarity?

CPM Meeting, Fermilab 2012

« Qualitatively: the presence of a signal in:

The point being this:




How to illustrate complementarity?

* Quantitatively: compare rates for the three probes
— Problem: different quantities are being reported
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|. Specific theory models

 Choose a complete new physics model with a
dark matter candidate

— See tomorrow afternoon’s CF4 sessions for talks on
« MSSM (Baer)
« MSUGRA (Sanford)
« NMSSM (McCaskey)
« UED (Kong)
» Hidden charged DM (Yu)

« Compute the three types of signals as a function
of the model parameters. Impose constraints.

* Problem: too many free input parameters

— fewer parameters come at the cost of introducing
model dependent assumptions "



ll. Model-independent approaches

 Alternatively, be agnostic about the underlying
theory model

« Parameterize our ignorance about

— the origin of SUSY breaking
« pMSSM talks (Ismail, Cotta, Cahill-Rowley, Drlica-Wagner)
— the type of DM-SM interactions and their mediators
» effective operators (Shepherd)
» Effective Lagrangian considered in the
complementarity document:
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Complementarity parameter space
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DM coupling exclusively to quarks

* Flavor universal axial vector ER
coupling (D8 operator) g XX s

DM interacting with quarks
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DM coupling exclusively to leptons

* Flavor universal vector L g,
coupling (D5 operator) g X%: T

DM interacting with leptons
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DM coupling exclusively to gluons

* 4-point interaction as _ . qawvge
(D11 operator) g X

DM interacting with gluons
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Action items

Collect feedback at the CF workshop

— suggestions are already coming in
— are there any major points missing?
Finish writing
— Write conclusions section
* Venn diagram?
— References: more or fewer?
— Complete the tables with DM experiments
— Authorship?

Draft an executive summary document
Anything else?
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