WHAT'S THE MATTER? THE SEARCH FOR CLUES IN OUR COLD, DARK UNIVERSE

Jonathan Feng University of California, Irvine

Heinz R. Pagels Memorial Public Lecture Aspen Center for Physics 14 July 2010

Credit: John Kormendy

PHYSICS: TRADITIONAL VIEW

PHYSICS: UPDATED VIEW

THE LARGE FRONTIER

solar system

galaxy

clusters of galaxies

universe

10¹² meters 10¹⁷ meters 10²³ meters > 10²⁶ meters

EVIDENCE FOR DARK MATTER: CLUSTERS OF GALAXIES

In the 1930's Fritz Zwicky observed the Coma cluster and found that the galaxies were moving too fast to be contained by the visible matter

EVIDENCE FOR DARK MATTER: INDIVIDUAL GALAXIES

In the 1970's Vera Rubin and collaborators and Albert Bosma found that stars in galaxies were rotating too fast to be contained by the visible matter

THE STANDARD MODEL OF COSMOLOGY

 Atoms make up only 4% of the Universe

- The rest of the matter is dark matter, which does not shine or reflect light
 - Not atoms
 - Cold
 - Stable
- Also, 73% of the Universe isn't even matter

atom nucleus proton neutron up qu

 10^{-10} meters (thickness of human 10^{-14} 10^{-15} $< 10^{-18}$ hair ~ 10^{-5} m) meters meters meters

4 FORCES OF NATURE

• Gravity

• Electromagnetism

• Strong

• Weak

STANDARD MODEL OF PARTICLE PHYSICS

WHICH PARTICLE IS DARK MATTER?

Known DM properties

Not atoms

Cold

Stable

The extraordinarily successful standard models of cosmology and particle physics are inconsistent

WHAT SHOULD WE DO?

- In 1821 Alexis Bouvard found anomalies in the path of Uranus and suggested they could be caused by unseen matter
- In 1845-46 Urbain Le Verrier determined where this matter should be. With this guidance, Johann Galle discovered the unseen matter at the Berlin Observatory in 1846
- Le Verrier wanted to call it Le Verrier, but this matter is now known as Neptune, the farthest known planet (1846-1930, 1979-1999, 2006-present)

WHICH FORCES DOES DARK MATTER FEEL? Strong

ightarrow

Gravity

Electromagnetism

Weak

OPTION 1: WIMPS

- Dark matter feels the weak force
- DM = WIMPs: weakly-interacting massive particles
- Why WIMPs?
 Looking under the lamp post

THE WIMP MIRACLE

- But there's more to it than that
- Many theories predict WIMPs that are around 100 times heavier than the proton
- Such particles are present just after the Big Bang, but then annihilate in pairs. Assuming they annihilate through the weak force, calculations show that they should be ~ 10% of the Universe now. This is what is required to be dark matter!

WIMP DETECTION

- If WIMPs annihilated in the early Universe, they should also be doing that now
- We can look for rare forms of matter and anti-matter created in these collisions

ICECUBE IN ANTARCTICA

Looking for neutrinos produced by WIMP annihilation in the Sun

50 m

1450 m

2450 m

ALPHA MAGNETIC SPECTROMETER

AMS

Carried by Space Shuttle to the International Space Station

14 July 10

WIMP PRODUCTION

- If WIMPs annihilated in the early Universe, we should also be able to run time backwards
- We can collide two normal particles at high velocities to create dark matter, which we detect as missing energy

LARGE HADRON COLLIDER

LHCb

ATLAS

ALICE

A ALAN AND A ALAN ALAN

Colliding protons at 99.999999% the speed of light

14 July 10

CMS -

Feng 21

BARCROFT MEDIA

WE I LIN

4 July 10

Billion collisions per second; dark matter is a needle in the haystack

WIMP RECOILS

- If WIMPs annihilated in the early Universe, we should also be able to run time *sideways*
- We can watch for normal matter recoiling from a WIMP collision. At any given time, there is roughly 1 WIMP per coffee cup, but their interactions are weak and recoils are rare

CRYOGENIC DARK MATTER SEARCH

Operating at milli-Kelvin temperatures in a mine in Minnesota

OPTION 2: SUPERWIMPS

- Dark matter does not feel the weak force
- DM = SuperWIMPs: superweaklyinteracting massive particles
- Seemingly a lost cause

GRAVITINOS

- An example: gravitinos proposed by Pagels and Primack in 1982
- Gravitinos feel only gravity
- But they may be created by decaying particles that have dramatic implications for the LHC

GRAVITINOS AT THE LHC

SUMMARY

- We now have two extraordinarily successful theories of the large and small, but they don't match
- A quarter of the Universe is dark matter, but we don't know what it is
- We have some ideas, though, and many interesting search experiments underway