RECENT DEVELOPMENTS IN DARK MATTER: THEORY PERSPECTIVE

Jonathan Feng, UC Irvine

2010 Phenomenology Symposium University of Wisconsin 12 May 2010

TOPICS

- PAMELA, FERMI, ... \leftrightarrow BOOSTED WIMPS
- CDMS, XENON, ... \leftrightarrow WIMPS
- DAMA, COGENT, ... \leftrightarrow LIGHT WIMPS

For more, see "Dark Matter Candidates from Particle Physics and Methods of Detection," 1003.0904, Annual Reviews of Astronomy and Astrophysics

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

$$X \longrightarrow q$$

$$X \longrightarrow \overline{q}$$

 $m_{\chi} \sim 100 \text{ GeV}, g_{\chi} \sim 0.6 \rightarrow \Omega_{\chi} \sim 0.1$

 Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP STABILITY

• Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

Cheng, Low (2003); Wudka (2003)

- This is a general argument for a stable weak-scale particle
- In specific contexts, this may be augmented by additional arguments.
 E.g., in SUSY, proton decay → R-parity.

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

Efficient scattering now (Direct detection)

INDIRECT DETECTION

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?

Astrophysics can explain PAMELA

> Zhang, Cheng (2001) Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008) Profumo (2008) ; Fermi (2009)

- For dark matter, there is both good and bad news
 - Good: the WIMP miracle motivates excesses at ~100 GeV – TeV
 - Bad: the WIMP miracle also tells us that the annihilation cross section should be a factor of 100-1000 too small to explain these excesses. Need enhancement from
 - astrophysics (very unlikely)
 - particle physics

SOMMERFELD ENHANCEMENT

 If dark matter X is coupled to a hidden force carrier φ, it can then annihilate through XX → φ φ

At freezeout: v ~ 0.3, only 1st diagram is significant, σ = σth
 Now: v ~ 10⁻³, all diagrams significant, σ = Sσth, S ~ πα_X/v, boosted at low velocities

 If m_X ~ 2 TeV, S ~ 1000, seemingly can explain excesses, get around WIMP miracle predictions
 Cirelli, Kadastik, Raidal, Strumia (2008)

Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)

Hisano, Matsumoto, Nojiri (2002)

CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

Feng, Kaplinghat, Yu (2009)

- Unfortunately, large S requires large α_X , but stronglyinteracting DM does not have the correct relic density
- More quantitatively: for $m_X = 2 \text{ TeV}$, S ~ 1000 ~ $\pi \alpha_X/v$, v ~ 10⁻³ $\rightarrow \alpha_X \sim 1 \rightarrow \Omega_X \sim 0.001$
- Alternatively, requiring $\Omega_X \sim 0.25$, what is the maximal S?
- Complete treatment requires including
 - Resonant Sommerfeld enhancement
 - Impact of Sommerfeld enhancement on freeze out

FREEZE OUT WITH SOMMERFELD ENHANCEMENT

 Sommerfeld enhancement → many interesting issues

> Dent, Dutta, Scherrer (2009) Zavala, Vogelsberger, White (2009)

- To maximize S, turn knobs in the most optimistic direction
 - Assume XX → φφ is the only annihilation channel
 - Delay kinetic decoupling as much as possible
 - Stop annihilations when the velocity distribution becomes non-thermal

Feng 11

WAYS OUT

- Best fit region excluded by an order of magnitude
- Astrophysical uncertainties
 - Local density, small scale structure
 - Cosmic ray propagation, proton contamination in PAMELA,...
- Particle physics
 - More complicated Sommerfeld models (smaller boosts required, but generically tighter bounds)
 - Resonant annihilation

Feldman, Liu, Nath (2008); Ibe, Murayama, Yanagida (2008); Gou, Wu (2009)

• Non-thermal DM production (e.g., Winos)

Grajek et al. (2008); Feldman, Kane, Lu, Nelson (2010); Cotta et al. (2010)

DM from decays

Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran (2008)

DIRECT DETECTION

• The big picture

 Strongly-interacting window now closed

DIRECT DETECTION

12 May 10

THE SIGNIFICANCE OF 10⁻⁴⁴ CM²

- New weak scale particles generically create many problems
- For example: K-K mixing

$$d \xrightarrow{\theta} s$$

$$i \quad \tilde{d}, \tilde{s}, \tilde{b} \quad i$$

$$g \stackrel{\tilde{g}}{i} \quad i \quad \tilde{d}, \tilde{s}, \tilde{b} \quad i$$

$$s \xrightarrow{\tilde{g}}{i} \quad \tilde{d}, \tilde{s}, \tilde{b} \quad i$$

- Three possible solutions
 - Alignment: θ small
 - Degeneracy (e.g. gauge mediation): typically not compatible with neutralino DM, because neutralinos decay to gravitinos
 - Decoupling: m > few TeV

THE SIGNIFICANCE OF 10⁻⁴⁴ CM²

Consider decoupling

- Remaining diagram depends on 3 parameters: M₁, M₂, μ (tanβ)
- Impose gaugino mass unification, Ω h² = 0.11
- One parameter left: m_χ
- Predictions collapse to a line

LIGHT WIMPS

- ~10 GeV DM may explain DAMA
- This region is now tentatively supported by CoGeNT (2010), disfavored by XENON100 (2010)
- Conventional WIMPs?
 - Low masses: unusual, but not so difficult (e.g., neutralinos w/o gaugino mass unification)

Dreiner et al. (2009)

 High cross sections: very difficult (chirality flip implies large suppression)
 Bottino et al. (2006)

Kuflik, Pierce, Zurek (2010)

LIGHT WIMP MODELS

• Mirror matter

Foot (2008)

- Asymmetric DM: relate DM number asymmetry to baryon number asymmetry, so m_{\chi} / m_{p} ~ \rho_{\chi} / \rho_{p} ~ 5

Talk of An

• WIMPless DM

Talks of Kumar, Badin, Yeghiyan, Fan, Sessolo

• Other candidates, related issues

Talks of Ibe, McCaskey, Ralston

WIMPLESS DM

Feng, Kumar (2008); Feng, Tu, Yu (2008)

 Thermal relics in a hidden sector with mass m_x and gauge coupling g_x

The thermal relic density constrains only one combination of g_X and m_X :

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

These models map out the remaining degree of freedom

This decouples the WIMP
 miracle from WIMPs

THE WIMPLESS MIRACLE

Can this be arranged?
 Consider GMSB

Superpartner masses ~ gauge couplings squared Cosmology

$$\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M}$$

Ω depends only on the SUSY Breaking sector:Ω_X ~ Ω_{WIMP} ~ Ω_{DM}

 This is generic in SUSY (AMSB, gMSB, no-scale SUGRA,...): is this what the flavor problem is telling us?

WIMPLESS SIGNALS

 Hidden DM may interact with normal matter through non-gauge interactions

Х

X

WIMPLESS DIRECT DETECTION

- The DAMA/CoGeNT region is easy to reach with WIMPless DM
- E.g., assume WIMPless DM X is a scalar, Y is a fermion, interact with b quarks through λ_b (XY_Lb_L + XY_Rb_R) + m_YY_LY_R
- Naturally correct mass, cross section
 - m_X ~ 5-10 GeV (WIMPless miracle)
 - large σ_{SI} for $\lambda_b \sim 0.3 1$ (flip chirality on heavy Y propagator)

FUTURE PROSPECTS

- More direct detection, of course, but also
- SuperK, IceCube

Hooper, Petriello, Zurek, Kamionkowski (2009) Feng, Kumar, Strigari, Learned (2009) Kumar, Learned, Smith (2009) Barger, Kumar, Marfatia, Sessolo (2010)

Light DM in Upsilon decays

McKeen (2008) Yeghiyan (2009) Badin, Petrov (2010)

 Tevatron and LHC can find connector particles: colored, similar to 4th generation quarks

EXOTIC 4TH QUARKS AT LHC

Direct searches, perturbativity \rightarrow 300 GeV < m_Y < 600 GeV

The entire region can be excluded by 10 TeV LHC with 300 pb⁻¹ (~7 TeV LHC with 1 fb⁻¹); significant discovery prospects

CONCLUSIONS

- DM searches are progressing rapidly on all fronts
 - Direct detection
 - Indirect detection
 - LHC
- Proliferation of DM candidates, but many are tied to the weak scale
- In the next few years, these DM models will be stringently tested