DARK MATTER PHENOMENOLOGY

Jonathan Feng University of California, Irvine CIPANP San Diego 29 May 2009

DARK MATTER

Talks at CIPANP: Cushman, many others

- We know how much there is $\Omega_{\rm DM} h^2 = 0.1099 \pm 0.0062$ WMAP (2008)
- But what is it?
- Intimately connected to central problems in particle physics and astrophysics
 - new particles and forces
 - structure formation

CANDIDATES

- Observational constraints

 Not baryonic (≠ weakly-interacting)
 Not hot (≠ cold)
 Not short-lived (≠ stable)
- Possible masses and interaction strengths span many, many orders of magnitude

Focus on candidates with mass around m_{weak} ~ 100 GeV

PARTICLE PHYSICS

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4} \quad \begin{array}{c} \mathbf{X} & \mathbf{f} \\ \mathbf{X} & \mathbf{f} \\ \mathbf{f} \end{array}$$

• $m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

DIRECT DETECTION 1

- WIMP properties
 - − v ~ 10⁻³ c
 - Kinetic energy ~ 100 keV
 - Local density ~ 1 / liter
- Detected by nuclear recoil in underground detectors; two leading methods
- Background-free detection
 - Spin-independent scattering is typically the most promising
 - Theory and experiment compared in the (m_X, σ_{proton}) plane
 - Expt: CDMS, XENON, ...
 - Theory: SUSY region WHAT ARE WE TO MAKE OF THIS?

DARK MATTER VS. FLAVOR PROBLEM

- Squark and slepton masses receive many contributions
- The gravitino mass $m_{\tilde{G}}$ characterizes the size of gravitational effects, which generically violate flavor and CP

$$m_{\tilde{q}}^2 = \begin{pmatrix} m_0^2 & 0 & 0 \\ 0 & m_0^2 & 0 \\ 0 & 0 & m_0^2 \end{pmatrix} + \begin{pmatrix} \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 \\ \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 \\ \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 & \sim m_{\tilde{G}}^2 \end{pmatrix}$$

- These violate low energy constraints (badly)
 - Flavor: Kaon mixing, $\mu \rightarrow e \gamma$
 - Flavor and CP: ϵ_{K}
 - CP: neutron EDM, electron EDM
- Low energy bounds: m_G << m₀
 Dark matter stability: m_G > m₀

Problem!

THE SIGNIFICANCE OF 10⁻⁴⁴ CM²

- Possible solutions
 - Set flavor violation to 0 by hand
 - Make sleptons and squarks heavy (few TeV or more)
- The last eliminates many annihilation diagrams, collapses predictions

 Summary: The flavor problem →
 σ_{SI} ~ 10⁻⁴⁴ cm²
 (focus point SUSY, inverted hierarchy models, more minimal SUSY, 2-1
 models, split SUSY,...)
 29 May 09

DIRECT DETECTION 2

Annual modulation: Collision rate should change as Earth's velocity adds constructively/destructively with the Sun's.

Drukier, Freese, Spergel (1986)

DAMA: 8σ signal with T ~ 1 year, max ~ June 2

CHANNELING

- DAMA's result is puzzling, in part because the favored region was considered excluded by others
- This may be ameliorated by
 - Astrophysics
 - Channeling: in crystalline detectors, efficiency for nuclear recoil energy → electron energy depends on direction

Gondolo, Gelmini (2005) Drobyshevski (2007), DAMA (2007)

- Channeling reduces threshold, shifts allowed region to
 - Rather low WIMP masses (~GeV)
 - Very high σ_{SI} (~10⁻³⁹ cm²)

INDIRECT DETECTION

PAMELA AND ATIC RESULTS

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?

- Shape consistent with some dark matter candidates
- Flux is a factor of 100-1000 too big for a thermal relic; requires enhancement
 - astrophysics (very unlikely)
 - particle physics
- No enhancement seen in anti-protons
- Pulsars can explain PAMELA

Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008); Profumo (2008) Fermi LAT Collaboration (2009)

FERMI AND HESS

• Fermi and HESS do not confirm ATIC: no feature, consistent with background

Pulsars can explain PAMELA

HIDDEN DARK MATTER

- The anomalies (DAMA, PAMELA, ATIC, ...) are not easily explained by canonical WIMPs
- Start over: What do we really know about dark matter?
 - All solid evidence is gravitational
 - Also solid evidence *against* strong and EM interactions
- A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is *hidden*

Kobsarev, Okun, Pomeranchuk (1966); many others

- What one seemingly loses
 - Connection to central problems of particle physics
 - The WIMP miracle
 - Non-gravitaitonal signals

WIMP MIRACLE REVISITED

- Consider SUSY: Hidden sectors appear generically. Each has its own
 - mass scale m_{χ}
 - gauge couplings g_X
- But the flavor problem motivates models with squark/slepton masses determined by gauge couplings (and so flavorblind):

$$m_{\chi} \sim g_{\chi}^2$$

(e.g., gauge mediation, anomaly-mediation)

This implies that Ω_X is constant in all sectors!

WIMPLESS MIRACLE

10⁰

Feng, Kumar (2008); Feng, Tu, Yu (2009)

 The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

- This framework decouples the WIMP miracle from WIMPs, motivates candidates with a range of masses/couplings
- These models map out the $\Omega h^2 = 0.11$ 10^{-1} remaining degree of freedom m_{weak} = 1 TeV 10⁻² gx m_{weak}=100 Ge∖ g_X 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻² 10⁻⁶ 10⁻⁴ 10⁰ 10^{2} m_x [GeV]

 m_{χ}

 10^{4}

HIDDEN DM SIGNALS

 Hidden DM may have only gravitational effects, but still interesting: e.g., it may have hidden charge, Rutherford scattering → self-interacting DM

Feng, Kaplinghat, Tu, Yu (2009)

- Many new, related ideas

Pospelov, Ritz (2007); Hooper, Zurek (2008) Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008) Ackerman, Buckley, Carroll, Kamionkowski (2008)

CONCLUSIONS

- Rapid experimental progress
 - Direct detection
 - Indirect detection
 - Colliders (LHC)
- Proliferation of new classes of candidates
 - WIMP dark matter
 - Hidden dark matter
 - ...
- In the next few years, many DM models will be stringently tested; we will either see something or be forced to rethink some of our most cherished prejudices