WIMPS AND THEIR RELATIONS

Work with Jose Ruiz Cembranos¹, Manoj Kaplinghat², Jason Kumar³, Arvind Rajaraman², Shufang Su⁴, Fumihiro Takayama⁵, Huitzu Tu², Haibo Yu² ¹Univ. of Minnesota, ²UC Irvine, ³Univ. of Hawaii, ⁴Univ. of Arizona, ⁵DESY

Jonathan Feng University of California, Irvine

CIFAR, Mont Tremblant 7 March 2009

DARK MATTER

- We know how much there is, but what is it?
- Possible masses and interaction strengths span many, many orders of magnitude

THE WEAK SCALE

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

$$\begin{array}{c} m_X \sim m_{\text{weak}} \sim 100 \text{ GeV} \\ g_X \sim g_{\text{weak}} \sim 0.6 \end{array} \end{array} \right\} \Omega_X \sim 0.1$$

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP MIRACLE IMPLICATIONS

- Astrophysics: DM is cold, collisionless
- Particle Physics: DM has weak interactions

(Direct detection)

WIMP MIRACLE IMPLICATIONS

- Astrophysics: DM is cold, collisionless
- Particle Physics: DM has weak interactions

WIMP MIRACLE IMPLICATIONS

- Astrophysics: DM is cold, collisionless
- Particle Physics: DM has weak interactions

SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

Consider supersymmetry: graviton $G \rightarrow$ gravitino \tilde{G}

Gravitinos naturally inherit the right density, but interact only gravitationally – they are superWIMPs

WARM SUPERWIMPS

- SuperWIMPs → no signals for direct and indirect searches
- But superWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by λ_{FS} , Q
- Warm DM with cold DM pedigree, as motivated as neutralinos

THE SKELETON IN THE CLOSET

- Leading WIMP candidate: neutralino χ
- Background check: Neutralino DM → flavor problems
 Neutralino DM → m_{G̃} > m_γ
 - m_{G̃} characterizes the size of gravitational effects, which generically violate flavor symmetries
 - Current bounds require $m_{\tilde{G}} < 0.01 m_{\chi}$ (e.g., $\mu \rightarrow e \gamma$)
- There are ways to reconcile χ DM with flavor constraints, but none is pretty

FLAVOR-CONSERVING MODELS

- There are well-known SUSY models that naturally conserve flavor: gauge-mediated SUSY-breaking models
- Can we find DM candidates in these models?
- 3 key features
 - $-m_{\tilde{G}} << m_{\chi}$
 - Several sectors of particles
 - Superpartner masses
 - m ~ (gauge couplings)²

WIMPLESS DARK MATTER

Feng, Kumar (2008)

- Suppose there are additional "hidden" sectors linked to the same SUSY breaking sector
- These sectors may have different
 - masses m_{χ}
 - gauge couplings g_X
- But $m_X/g_X^2 \sim \Omega_X \sim \text{constant}$

THE WIMPLESS MIRACLE

• The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

• These models map out the remaining degree of freedom

 This framework decouples the WIMP miracle from WIMPs, candidates have a range of masses/couplings, but always the right relic density

WIMPLESS SIGNALS

- WIMPless DM may have hidden sector charge, so *not* collisionless
- But WIMPless matter may also interact with normal matter through non-gauge interactions

Many new, related ideas
Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)
Pospelov, Ritz (2008)

CONCLUSIONS

- The WIMP miracle is a striking coincidence, but it does not necessarily mean that DM is WIMPs
- Proliferation of new classes of DM candidates
 - WIMP dark matter
 - WIMPless dark matter
 - superWIMP dark matter
- These have qualitatively different implications for particle physics, astrophysics, cosmology