DARK MATTER CANDIDATES AND SIGNALS

Jonathan Feng University of California, Irvine Texas Symposium in Vancouver 12 December 2008

DARK MATTER

We know how much there is $\Omega_{DM}h^2 = 0.1099 \pm 0.0062$

WMAP (2008)

- But what is it?
- Intimately connected to central problems in particle physics and astrophysics
 - new particles and forces
 - structure formation

CANDIDATES

- Observational constraints

 Not baryonic (≠ weakly-interacting)
 Not hot (≠ cold)
 Not short-lived (≠ stable)
- Possible masses and interaction strengths span many, many orders of magnitude

Focus on candidates with mass around m_{weak} ~ 100 GeV

PARTICLE PHYSICS

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p e^- \overline{v}$

• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

 $m_{\chi} \sim 100 \text{ GeV}, g_{\chi} \sim 0.6 \Rightarrow \Omega_{\chi} \sim 0.1$

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMPS FROM SUPERSYMMETRY

The classic WIMP: neutralinos predicted by supersymmetry Goldberg (1983); Ellis et al. (1983)

Supersymmetry: extends rotations/boosts/translations, string theory, unification of forces,... For every known particle X, predicts a partner particle \tilde{X}

Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$

 χ is usually the lightest supersymmetric particle, stable, mass \sim 100 GeV: all the right properties for WIMP dark matter

$\Omega_{\rm DM}$ = 23% ± 4% stringently constrains models

Cosmology excludes many possibilities, favors certain regions

WIMPS FROM EXTRA DIMENSIONS

Extra dimensional theories predict Kaluza-Klein dark matter.

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

- A particle moving in an extra dimension of size *L* appears to us as a tower of particle states
- The lightest can be dark matter

mass

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

DIRECT DETECTION

- WIMP properties: v ~ 10⁻³ c Kinetic energy ~ 100 keV Local density ~ 1 / liter
- Detected by nuclear recoil in underground detectors. Two approaches:
 - 1. Background-free detection
 - CDMS, XENON, ...
 - Exclude regions of the (m,σ) plane
 - Already interesting, will probe the heart of SUSY parameter space in the next few years

2. Annual modulation

Collision rate should change as Earth's velocity adds constructively/ destructively with the Sun's.

Drukier, Freese, Spergel (1986)

DAMA: 8σ signal with T ~ 1 year, max ~ June 2

2-6 keV

CHANNELING

- DAMA's result is puzzling, in part because the favored region was considered excluded by others
- This may be ameliorated by astrophysics and channeling: in crystalline detectors, efficiency for nuclear recoil energy → electron energy depends on direction
- Channeling reduces threshold, shifts allowed region to lower masses. Consistency possible, but requires uncomfortably low WIMP masses (~ GeV)

Gondolo, Gelmini (2005) Drobyshevski (2007), DAMA (2007)

INDIRECT DETECTION

PAMELA AND ATIC RESULTS

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?

- Shape consistent with some dark matter candidates, but flux
 ~ 100 too big; requires enhancement from astrophysics or particle physics
- Pulsars can explain the excess

Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008)

 Critical tests from other experiments: Fermi, AMS...

15

HIDDEN DARK MATTER

- The anomalies (DAMA, PAMELA, ATIC, ...) are not easily explained by canonical WIMPs
- Start over: What do we really know about dark matter?
 - All solid evidence is gravitational
 - Also solid evidence *against* strong and EM interactions
- A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is *hidden*
- What one seemingly loses: the WIMP miracle and nongravitaitonal signals

WIMP MIRACLE REVISITED

- Hidden sectors appear generically in SUSY. Each has its own
 - mass scales m_{χ}
 - gauge couplings g_X
- But in some well-motivated models,

 $m_{\chi}/g_{\chi}^2 \sim \text{constant}$

across all sectors, and so Ω_X is also constant

WIMPLESS DARK MATTER

 The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

 These models map out the remaining degree of freedom

Feng, Kumar (2008)

 This framework decouples the WIMP miracle from WIMPs, motivates candidates with a range of masses/couplings

WIMPLESS SIGNALS

. . .

- WIMPless DM may have only gravitational effects
- But WIMPless matter may also interact with normal matter through non-gauge interactions

Many new, related ideas
 Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)
 Pospelov, Ritz (2008)

SUPERWIMPS

Many new particle theories include superweakly-interacting particles. E.g., Supersymmetry: Graviton → Gravitino G
 Mass ~ 100 GeV; only gravitational interactions

• Ĝ not LSP

Assumption of most of literature

 Completely different cosmology and particle physics

SUPERWIMP RELICS

- Suppose the gravitino G̃ is the LSP
 - WIMPs freeze out as usual

WIMP

Ĝ

Gravitinos naturally inherit the right density, but interact only gravitationally – they are superWIMPs (also KK gravitons,, axinos, etc.)

Feng, Rajaraman, Takayama (2003); Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Feng, Su, Takayama (2004); Buchmuller, Hamaguchi, Ratz, Yanagida (2004); Roszkowski, Ruiz de Austri, Choi (2004); Brandeburg, Covi, Hamaguchi, Roszkowski, Steffen (2005); ...

SUPERWIMP COSMOLOGY

Late decays can modify BBN (Resolve ^{6,7}Li problems?)

Late decays can modify CMB black body spectrum (µ distortions)

SMALL SCALE STRUCTURE

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by $\lambda_{\text{FS}},\, \textbf{Q}$
- Warm DM with cold DM pedigree

Dalcanton, Hogan (2000)

- Lin, Huang, Zhang, Brandenberger (2001)
 - Sigurdson, Kamionkowski (2003)
- Profumo, Sigurdson, Ullio, Kamionkowski (2004) Kaplinghat (2005)
- Cembranos, Feng, Rajaraman, Takayama (2005)
 - Strigari, Kaplinghat, Bullock (2006)
 - Bringmann, Borzumati, Ullio (2006)

CONCLUSIONS

- Recent anomalies (DAMA, PAMELA, ATIC, ...)
- Rapid experimental progress
 - Direct detection
 - Indirect detection
 - Colliders (LHC)
- Proliferation of new classes of candidates
 - WIMP dark matter
 - WIMPless dark matter
 - superWIMP dark matter
- If anything discussed here is realized in nature, life will be very interesting in the coming years