DARK MATTERS

9 October 2008 Caltech Physics Colloquium

Jonathan Feng UC Irvine

COSMOLOGY NOW

Remarkable agreement

Dark Matter: $23\% \pm 4\%$ Dark Energy: $73\% \pm 4\%$ Baryons: $4\% \pm 0.4\%$ Neutrinos: $0.2\% (\Sigma m_v/0.1 eV)$

Remarkable precision

Remarkable results

OPEN QUESTIONS

DARK MATTER

- Is it a fundamental particle?
- What are its mass and spin?
- How does it interact?
- Is it absolutely stable?
- What is the symmetry origin of the dark matter particle?
- Is dark matter composed of one particle species or many?
- How and when was it produced?
- Why does $\Omega_{\rm DM}$ have the observed value?
- What was its role in structure formation?
- How is dark matter distributed now?

DARK ENERGY

- What is it?
- Why not $\Omega_{\Lambda} \sim 10^{120}$?
- Why not $\Omega_{\Lambda} = 0$?
- Does it evolve?

BARYONS

- − Why not $\Omega_{\rm B} \approx 0$?
- Related to neutrinos, leptonic CP violation?
- Where are all the baryons?

THE DARK UNIVERSE

The problems appear to be completely different

DARK MATTER

- No known particles contribute
- Probably tied to
 *M*_{weak} ~ 100 GeV
- Several compelling solutions

DARK ENERGY

- All known particles contribute
- Probably tied to $M_{\text{Planck}} \sim 10^{19} \text{ GeV}$
- No compelling solutions

DARK MATTER

Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Unambiguous evidence for new physics

DARK MATTER CANDIDATES

- The observational constraints are no match for the creativity of theorists
- Masses and interaction strengths span many, many orders of magnitude, but not all candidates are equally motivated

HEPAP/AAAC DMSAG Subpanel (2007)

NEW PARTICLES AND NATURALNESS

 $m_h \sim 100 \text{ GeV}, \Lambda \sim 10^{19} \text{ GeV} \rightarrow \text{cancellation of 1 part in } 10^{34}$

At ~ 100 GeV we expect new particles: supersymmetry, extra dimensions, something!

THE "WIMP MIRACLE"

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi\chi \leftrightarrow \overline{f}f$$

(2) Universe cools: $\chi \chi \rightleftharpoons \overline{f} f$

(3) χ s "freeze out":

Zeldovich et al. (1960s)

• The amount of dark matter left over is inversely proportional to the annihilation cross section:

 $\Omega_{\rm DM} \sim \langle \sigma_{\rm A} v \rangle^{-1}$

- What is the constant of proportionality?
- Impose a natural relation:

 $\sigma_{\rm A}\,{=}\,k\alpha^2/m^2$, $~so~\Omega_{\rm DM}\,{\sim}\,m^2$

HEPAP LHC/ILC Subpanel (2006) [band width from k = 0.5 – 2, S and P wave]

Remarkable "coincidence": $\Omega_{DM} \sim 0.1$ for m ~ 100 GeV – 1 TeV

STABILITY

- This all assumes the new particle is stable. Why should it be?

New Particle States

 In many theories, dark matter is easier to explain than no dark matter

WIMPs from Supersymmetry

The classic WIMP: neutralinos predicted by supersymmetry Goldberg (1983); Ellis et al. (1983)

Supersymmetry: extends rotations/boosts/translations, string theory, unification of forces,... For every known particle X, predicts a partner particle \tilde{X}

Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}u, \tilde{H}d)$

Particle physics alone $\rightarrow \chi$ is lightest supersymmetric particle, stable, mass ~ 100 GeV. All the right properties for WIMP dark matter!

Ω_{DM} = 23% ± 4% stringently constrains models

Cosmology excludes many possibilities, favors certain regions

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

Efficient scattering now (Direct detection)

INDIRECT DETECTION

Feng 14

DIRECT DETECTION

- WIMP properties: v ~ 10⁻³ c Kinetic energy ~ 100 keV Local density ~ 1 / liter
- Detected by recoils off ultrasensitive underground detectors
- DAMA has reported a signal in annual modulation
- Theory predictions vary, but many models → 10⁻⁴⁴ cm

DIRECT DETECTION: DAMA

 8σ signal for annual modulation with T ~ 1 year, max ~ June 2

PARTICLE COLLIDERS

LHCb ATLAS

ALICE

LHC: $E_{COM} = 14$ TeV, 10^{6} - 10^{8} top quarks/yr [Tevatron: $E_{COM} = 2$ TeV, 10^{2} - 10^{4} top quarks/yr]

CMS

WHAT THEN?

- What LHC actually sees:
 - E.g., $\tilde{q}\tilde{q}$ pair production
 - − Each \tilde{q} → neutralino χ
 - -2χ 's escape detector
 - missing momentum
- This is not the discovery of dark matter
 - Lifetime > 10^{-7} s \rightarrow 10^{17} s?

THE EXAMPLE OF BBN

- Nuclear physics → light element abundance predictions
- Compare to light element abundance observations
- Agreement → we understand the universe back to

t ~ 1 sec

DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation

• How well can we do?

Contributions to Neutralino WIMP Annihilation

Jungman, Kamionkowski, Griest (1995)

PRECISION SUSY @ LHC

 Masses can be measured by reconstructing the decay chains

$$\begin{aligned} \left(m_{ll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\min} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\ell}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\ell}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{thres}} &= \left[\left(m_{\tilde{q}_{L}}^{2} + m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\ell}_{R}}^{2}\right)\left(m_{\tilde{\ell}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right) - 16m_{\tilde{\chi}_{2}^{0}}^{2}m_{\tilde{\ell}_{R}}^{4}m_{\tilde{\ell}_{R}}^{4}\right) \\ &\quad - \left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)\left(4m_{\tilde{\ell}_{R}}^{2}m_{\tilde{\chi}_{2}^{0}}^{2}\right) \end{aligned}$$

RELIC DENSITY DETERMINATIONS

% level comparison of predicted Ω_{collider} with observed Ω_{cosmo}

IDENTIFYING DARK MATTER

TAKING STOCK

- WIMPs are astrophysically identical
 - Weakly-interacting
 - Cold
 - Stable
- Is this true of all DM candidates?
- No. But is this true of all DM candidates independently motivated by particle physics and the "WIMP miracle"?
- No! SuperWIMPs: identical motivations, but qualitatively different implications

SUPERWIMPS: BASIC IDEA

Feng, Rajaraman, Takayama (2003)

Supersymmetry: Graviton \rightarrow Gravitino \tilde{G} Mass ~ 100 GeV; Interactions: only gravitational (superweak)

• Ĝ not LSP

Assumption of most of literature

• Ĝ LSP

 Completely different cosmology and particle physics

SUPERWIMP RELICS

Suppose gravitinos *G̃* are the LSP

WIMPs freeze out as usual

WIMP

Gravitinos naturally inherit the right density, but interact only gravitationally - they are superWIMPs (also KK gravitons, quintessinos, axinos, etc.)

Feng, Rajaraman, Takayama (2003); Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Feng, Su, Takayama (2004); Buchmuller, Hamaguchi, Ratz, Yanagida (2004); Roszkowski, Ruiz de Austri, Choi (2004); Brandeburg, Covi, Hamaguchi, Roszkowski, Steffen (2005); ...

Charged Particle Trapping

- SuperWIMPs are produced by decays of metastable particles. These can be charged.
- Charged metastable particles will be obvious at colliders, can be trapped and moved to a quiet environment to study their decays.
- Can catch 1000 per year in a 1m thick water tank

Feng, Smith (2004) Hamaguchi, Kuno, Nakawa, Nojiri (2004) De Roeck et al. (2005)

IMPLICATIONS FROM CHARGED PARTICLE DECAYS

$$\tau(\tilde{l} \to l\tilde{G}) = \frac{6}{G_N} \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^5} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^{-4}$$

- Measurement of τ , $\tilde{m_{l}}$ and $E_{l} \rightarrow m_{\tilde{G}}$ and G_{N}
 - Probes gravity in a particle physics experiment!
 - Measurement of G_N on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant

Hamaguchi et al. (2004); Takayama et al. (2004)

SUPERWIMP COSMOLOGY

Late decays can modify BBN (Resolve ^{6,7}Li problems?)

Late decays can modify CMB black body spectrum (µ distortions)

SMALL SCALE STRUCTURE

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by $\lambda_{\text{FS}},\, \textbf{Q}$
- Warm DM with cold DM pedigree

Dalcanton, Hogan (2000)

- Lin, Huang, Zhang, Brandenberger (2001)
 - Sigurdson, Kamionkowski (2003)
- Profumo, Sigurdson, Ullio, Kamionkowski (2004) Kaplinghat (2005)
- Cembranos, Feng, Rajaraman, Takayama (2005)
 - Strigari, Kaplinghat, Bullock (2006)
 - Bringmann, Borzumati, Ullio (2006)

CONCLUSIONS

- Particle Dark Matter
 - Central topic at the interface of cosmology and particles
 - − Both cosmology and particle physics \rightarrow weak scale ~ 100 GeV

Candidates

- WIMPs: Many well-motivated candidates
- SuperWIMPs: Qualitatively new possibilities (warm, only gravitationally interacting)
- Many others
- LHC collisions begin in 2009, direct and indirect detection are improving rapidly this field will be transformed soon