Dark Matter: From the Cosmos to the Laboratory

SUPERSYMETRY FOR ASTROPHYSICISTS

Jonathan Feng University of California, Irvine

29 Jul – 1 Aug 2007 SLAC Summer Institute

Graphic: N. Graf

POLLING DATA

I'm giving summer school lectures titled, "Supersymmetry for Astrophysicists." What should I talk about?

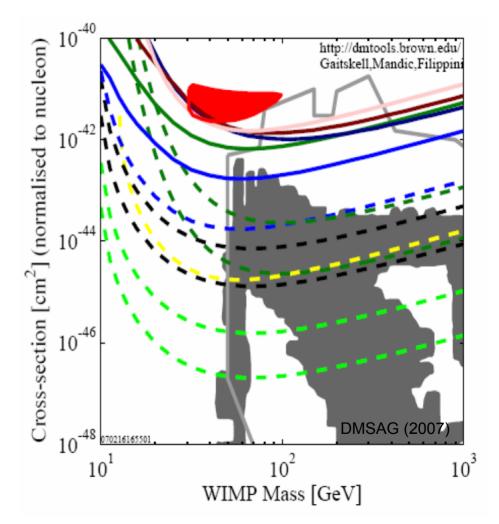
- Astrophysicist #1: "Beats me. I couldn't care less about supersymmetry. Maybe you can get out of it somehow."
- Astrophysicist #2: "Dark matter, of course. Isn't that the only motivation for supersymmetry?"

OUTLINE

LECTURE 1: SUSY ESSENTIALS

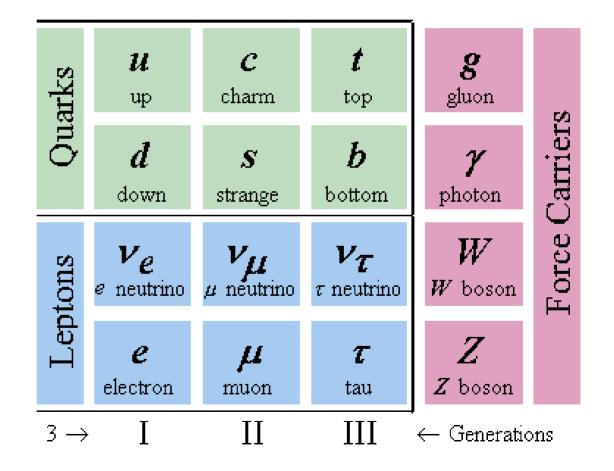
Standard Model; SUSY Motivations; LSP Stability and Candidates

LECTURE 2: NEUTRALINOS


Properties; Production; Direct Detection; Indirect Detection; Collider Signals

LECTURE 3: GRAVITINOS

Properties; Production; Astrophysical Detection; Collider Signals


SUSY ESSENTIALS

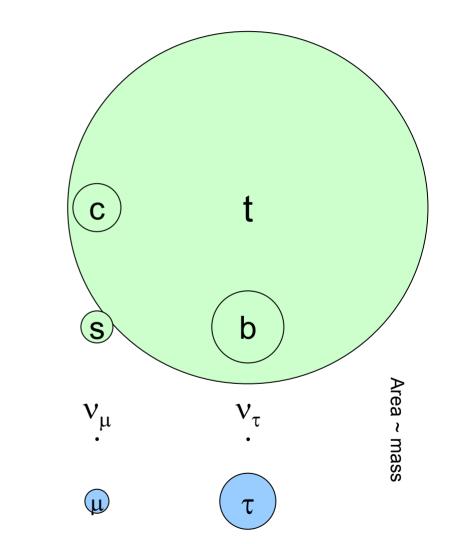
- First discuss motivations for supersymmetry. Why?
- Supersymmetry is the best motivated framework for new particle physics
- Generic properties vs. special models (What do these shaded regions mean?)
- Direct implications for astrophysics

STANDARD MODEL

- Matter Particles
 - Quarks and leptons
 - Spin ½ fermions
- Force Particles
 - Photon (EM)
 - W, Z (weak)
 - Gluons (strong)
 - Spin 1 bosons
- Higgs Particle
 - Undiscovered
 - Spin 0 boson

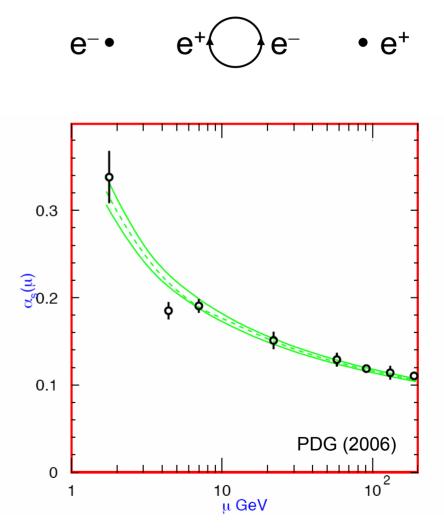
Matter Particles

U


d

 \bigcirc

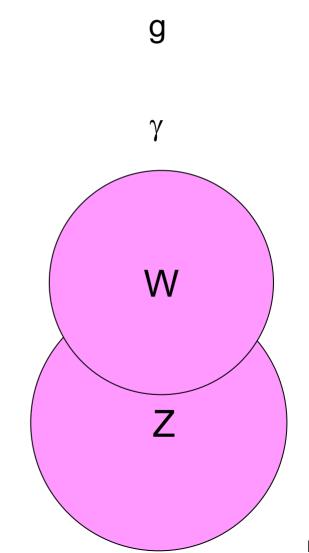
 v_{e}


e

- Most of the unexplained parameters of the SM are here
- Interactions determined by unusual quantum numbers
- Masses span at least 11
 orders of magnitude
 - Neutrinos ~ eV
 - Electron: 511 keV
 - Top quark: 171 GeV
- The top quark is heavy!

Force Particles

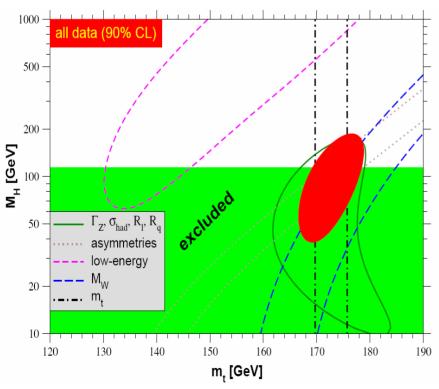
- Couplings $\alpha \equiv g^2/(4\pi)$ at m_Z
 - $\alpha_{\text{EM}} = 0.007818 \pm 0.000001$
 - $\alpha_{weak} = 0.03381 \pm 0.00002$
 - $\alpha_{s} = 0.118 \pm 0.002$
- At observable energies, $\alpha_{\text{EM}} < \alpha_{\text{weak}} < \alpha_{\text{s}}$
- Precisely measured
- Scale-dependent the quantum vacuum has dielectric properties

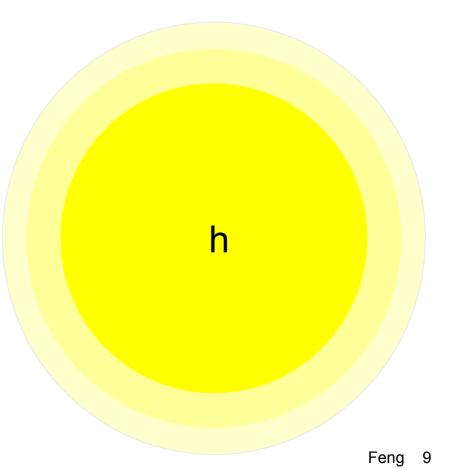


Force Particles

Masses

- $-m_{\gamma} = 0: U(1)$ conserved
- $-m_g = 0$: SU(3) conserved
- $m_W = 80 \text{ GeV}$: SU(2) broken
- $-m_z = 91 \text{ GeV}$: SU(2) broken

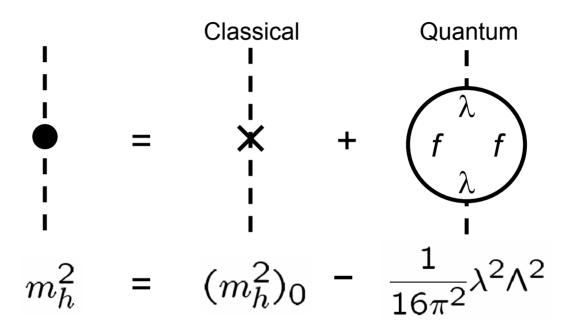

 SU(2) is broken, the others aren't



Higgs Particle

Mass

- Direct searches: m_h > 115 GeV
- Indirect constraints from precision data: 40 GeV < m_h < 200 GeV


NATURALNESS

- We know 3 fundamental constants
 - Special relativity: speed of light c
 - Quantum mechanics: Planck's constant h
 - General relativity: Newton's constant ${\cal G}$
- From these we can form the Planck mass

$$M_{\rm PI} = \sqrt{\frac{hc}{G}} \approx 10^{19} {\rm ~GeV}$$

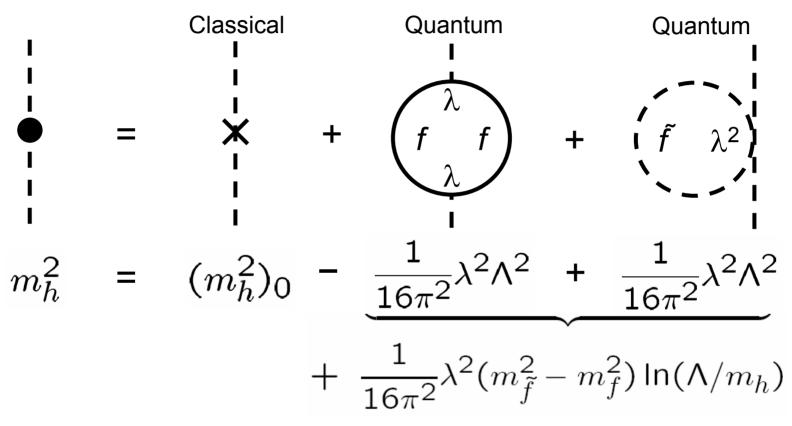
• Why are $m_h, m_W, m_Z, ... << M_{Pl}$?

Gauge Hierarchy Problem

In the SM, m_h is naturally ~ Λ , the largest energy scale

 $m_h \sim 100 \text{ GeV}, \Lambda \sim 10^{19} \text{ GeV} \rightarrow \text{cancellation of 1 part in } 10^{34}$

SUPERSYMMETRY


SYMMETRIES OF NATURE	Exact	Broken
Gauge	U(1) _{EM,} SU(3) _c	SU(2) x U(1) _Y
Global	B, L	$\boldsymbol{L}_{\boldsymbol{e}},\boldsymbol{L}_{\boldsymbol{\mu}},\boldsymbol{L}_{\boldsymbol{\tau}}$
Spacetime	Rotations, Boosts, Translations	SUSY

Supersymmetry is a qualitatively new class of symmetry

Superpartners

- Translations: particle P at $x \rightarrow$ particle P at x'
- SUSY: particle P at $x \rightarrow$ particle \tilde{P} at x, where
 - − P and \tilde{P} differ in spin by ½: fermions \leftrightarrow bosons
 - P and P are identical in all other ways (mass, couplings)
- New particles
 - Superpartners of matter particles: Spin 0 bosons, add "s" (selectron, sneutrinos, squark, ...)
 - Superpartners of force particles: Spin ½ fermions, add "ino" (photino, Wino, …)
 - Superpartners of Higgs particles: Spin ½ fermions, "Higgsinos"

SUSY AND NATURALNESS

Dependence on Λ is softened to a logarithm

SUSY solves the gauge hierarchy problem, even if broken, provided superpartner masses are ~ 100 GeV

30 Jul - 1 Aug 07

Higgs Doubling

- SUSY requires 2 Higgs doublets to cancel anomalies and to give mass to both up- and down-type particles
- E.g., anomaly cancelation requires $\Sigma Y^3 = 0$, where Y is hypercharge and the sum is over fermions. This holds in the SM
- SUSY adds an extra fermion with Y = -1:

$$\left(\begin{array}{c}h^{0}\\h^{-}\end{array}\right) \equiv \left(\begin{array}{c}h^{0}\\h^{d}_{d}\end{array}\right) \Rightarrow \left(\begin{array}{c}\tilde{H}^{0}_{d}\\\tilde{H}^{d}_{d}\end{array}\right)$$

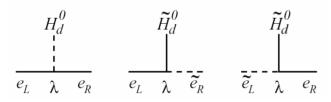
• To cancel the anomaly we add another Higgs doublet with Y = +1:

$$\left(\begin{array}{c}h_u^+\\h_u^0\end{array}\right) \Rightarrow \left(\begin{array}{c}\tilde{H}_u^+\\\tilde{H}_u^0\end{array}\right)$$

SUSY PARAMETERS

SUSY breaking introduces many unknown parameters. These are

- Masses for sleptons and squarks: m²_{fij}
- Masses for gauginos: M₁, M₂, M₃
- Trilinear scalar couplings (similar to Yukawa couplings): A^f_{ii}
- Mass for the 2 Higgsinos: $\mu \tilde{H}_u \tilde{H}_d$
- Masses for the 2 neutral Higgs bosons: $B H_u H_d + m_{Hu}^2 |H_u|^2 + m_{Hd}^2 |H_d|^2$
- The 2 neutral Higgs bosons both contribute to electroweak symmetry breaking:

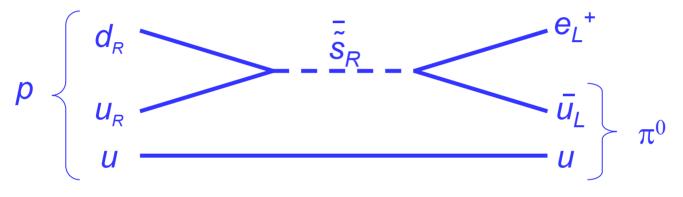

 $v^2 = (174 \text{ GeV})^2 \rightarrow v_u^2 + v_d^2 = (174 \text{ GeV})^2$

The extra degree of freedom is called $tan\beta = v_u/v_d$

30 Jul – 1 Aug 07

TAKING STOCK

- SUSY is a single symmetry, which implies many new particles
- Many new parameters, but
 - Dimensionless couplings are fixed (no "hard" breaking)

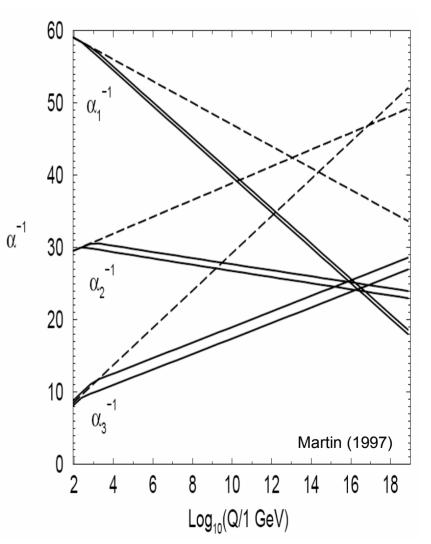


- Dimensionful parameters are allowed (soft breaking), but should be ~ 100 GeV
- Even the dimensionful parameters cannot be arbitrary

Analogy	Soap Bubble	SM
Large Parameter	Length L Height H	M _{PI}
Small Parameter	L - H	m _h
Symmetry explanation	Rotational invariance	SUSY
Symmetry breaking	Gravity	M _{SUSY}
Natural if	Gravity weak	M _{SUSY} small

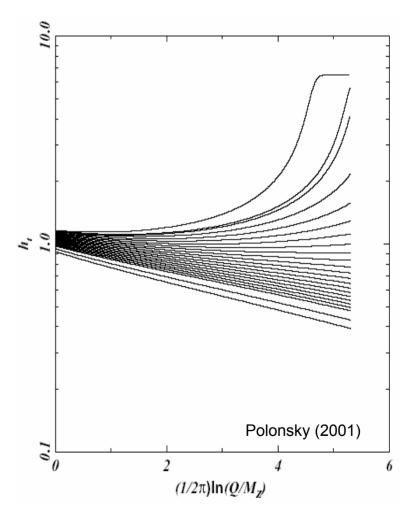
R-PARITY AND STABLE SUPERPARTNERS

• One problem: proton decay

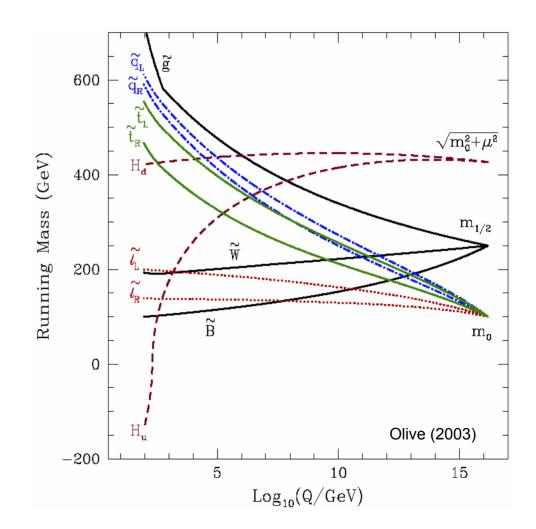

- Forbid this with R-parity conservation: $R_p = (-1)^{3(B-L)+2S}$
 - SM particles have $R_p = 1$, SUSY particles have $R_p = -1$
 - Requires 2 superpartners in each interaction
- Consequence: the lightest SUSY particle (LSP) is stable and cosmologically significant. What is the LSP?
 30 Jul – 1 Aug 07

Neutral SUSY Particles

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Nlaufu)	Ĝ
		Neutr	alinos: {χ⊧	$\equiv\chi_1, \chi_2, \chi_3, \chi_3$	$\langle 4 \rangle$	gravitino
1	В	W ^o				
1/2	Ĩ	W ۲	$ ilde{H}_u$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H _u	H _d	ĩ	
					sneutrino	


FORCE UNIFICATION

- Can the 3 forces be unified, e.g., SU(3) x SU(2) x U(1) → SO(10)?
- Superpartners modify the scale dependence of couplings
- With TeV superpartners, 3 couplings meet at a point!
 - No free parameters
 - % level "coincidence"
 - Coupling at unification: $\alpha^{-1} > 1$
 - Scale of unification
 Q > 10¹⁶ GeV (proton decay)
 Q < 10¹⁹ GeV (quantum gravity)
- SUSY explains $\alpha_{\text{EM}} < \alpha_{\text{weak}} < \alpha_{s}$
- Gaugino mass unification implies $M_1:M_2:M_3 \approx \alpha_1:\alpha_2:\alpha_3 \approx 1:2:7$, the Bino is the lightest gaugino


TOP QUARK MASS

- Force unification suggests we can extrapolate to very high energy scales
- All parameters (masses, couplings) have scale dependence
- The top quark Yukawa coupling has a quasi-fixed point near its measured value
- SUSY "explains" heavy top

SCALAR MASSES

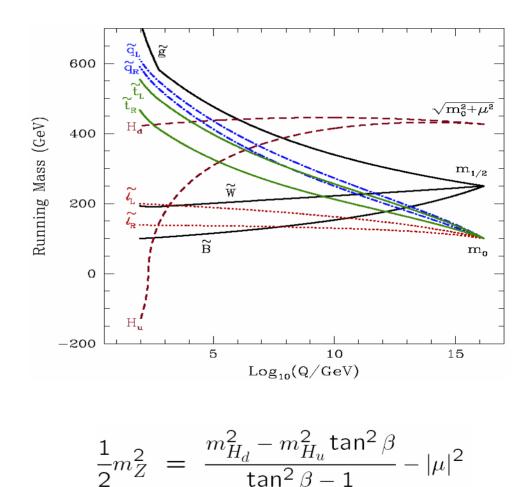
- How do scalar masses change with scale?
- Gauge couplings increase masses; Yukawa couplings decrease masses
- H_u has large top quark Yukawa, but no compensating strong interaction
- H_u is the lightest scalar. In fact, it's typically tachyonic!

ELECTROWEAK SYMMETRY BREAKING

• The Higgs boson potential is

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2$$
$$-(BH_u^0H_d^0 + \text{c.c.}) + \frac{1}{8}(g^2 + g'^2)(|H_u^0|^2 - |H_d^0|^2)^2$$

• Minimizing this, one finds (for moderate/large tanβ)


$$\frac{1}{2}m_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2 \approx -m_{H_u}^2 - |\mu|^2$$

• EWSB requires $m_{Hu}^2 < 0$

SUSY explains why SU(2) is broken and SU(3) and U(1) aren't

SNEUTRINOS AND HIGGSINOS

- Lightest physical scalars are typically the right-handed sleptons
- Sneutrinos
 - have SU(2) interactions, and so are typically heavier
 - Disfavored as LSPs by direct searches
- EWSB also fixes Higgsino mass μ

LECTURE 1 SUMMARY

- The Standard Model is incomplete
- SUSY provides elegant solutions
 - Naturalness
 - Force unification
 - Electroweak symmetry breaking
- Proton decay \rightarrow R-parity, stable LSP
- Natural LSPs: neutralino (Bino/Higgsino), gravitino

OUTLINE

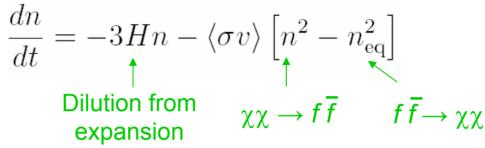
LECTURE 1: SUSY ESSENTIALS

The Standard Model; Motivations; Key Features

LECTURE 2: NEUTRALINOS

Properties; Production; Direct Detection; Indirect Detection; Collider Signals

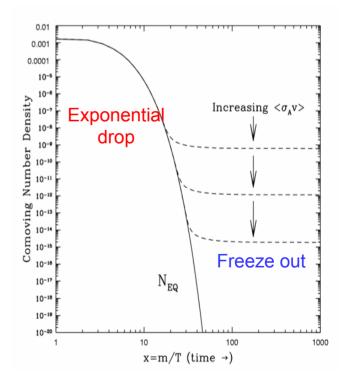
LECTURE 3: GRAVITINOS


Properties; Production; Astrophysical Detection; Collider Signals

LAST TIME

- SUSY provides elegant solutions to SM problems
 - Naturalness
 - Force unification
 - Electroweak symmetry breaking
- SUSY predicts a new partner particle for every known particle (+ extra Higgs doublet)
- Proton decay → R-parity, lightest superpartner is stable, potentially significant dark matter

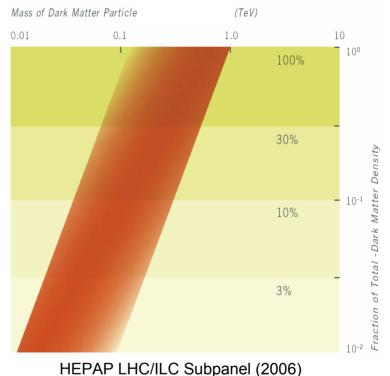
Thermal Relic Abundance


• The Boltzmann equation:

 n ≈ n_{eq} until interaction rate drops below expansion rate:

$$\frac{n_{\rm eq} \langle \sigma v \rangle \sim H}{(mT)^{3/2} e^{-m/T}} \frac{1}{T^2/M_{\rm Pl}}$$

 The universe expands *slowly* ! Mass *m* particles freeze out at *T* ~ *m*/25



• The amount of dark matter left over is inversely proportional to the annihilation cross section:

 $\Omega_{\rm DM} \sim \langle \sigma_{\rm A} v \rangle^{-1}$

- What is the constant of proportionality?
- Impose a natural relation:

 $\sigma_{\rm A}\,{=}\,k\alpha^2/m^2$, $~so~\Omega_{DM}\,{\sim}\,m^2$

[band width from k = 0.5 - 2, S and P wave]

Remarkable "coincidence": $\Omega_{DM} \sim 0.1$ for m $\sim 0.1 - 1$ TeV, The mass range predicted for superpartners

SUPERSYMMETRY BREAKING

- How are superpartner masses generated?
- EWSB in the standard model:

EWSB Sector	Mediating Interactions	Observable Sector
$h \rightarrow v$	h, q, l	q, l

EWSB parameterized by v. Mediating interactions (Yukawa couplings) \rightarrow observable spectrum

• Hidden sector SUSY Breaking:

SUSY Breaking Sector	Mediating Interactions	Observable Sector
$Z \rightarrow F$	Z, q̃, l̃	q̃, l

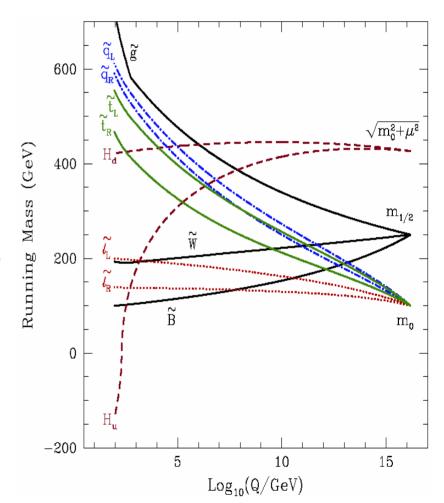
SUSY breaking parameterized by F (dimension 2). Mediation mechanism \rightarrow observable spectrum

30 Jul – 1 Aug 07

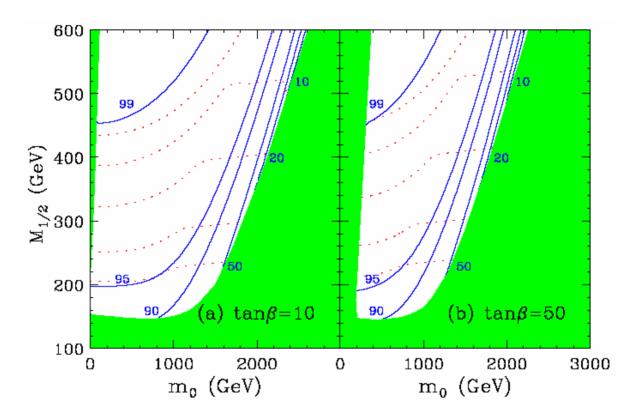
GRAVITY-MEDIATED SUSY BREAKING

- There are M_{Pl}-suppressed interactions. Minimal assumption: use these as the mediating interactions:
 - $\begin{array}{rcl} c_{ij} \frac{Z^{\dagger}Z}{M_{\rm Pl}^2} \phi_i^* \phi_j & \rightarrow & {\rm scalar \ masses} \\ c_a \frac{Z}{M_{\rm Pl}} \lambda_a \lambda_a & \rightarrow & {\rm gaugino \ masses} \\ c_{ijk} \frac{Z}{M_{\rm Pl}} \phi_i \phi_j \phi_k & \rightarrow & A \ {\rm terms} \\ c \frac{Z^{\dagger}Z}{M_{\rm Pl}^2} \phi_i \phi_j & \rightarrow & B \ {\rm term} \end{array}$

- The gravitino mass is $m_{\tilde{G}} \sim F/M_{\rm Pl}$
- For F ~ (10¹⁰ GeV)², when Z → F, the gravitino and all superpartner masses are ~ 100 GeV
- Assume that the gravitino is not the LSP for this lecture


SUPERSYMMETRIC MODELS

• To get further, determine relic densities, detection rates, etc., we must specify the SUSY parameters


- Two choices
 - scan parameters model-independently
 - Choose models that embody many of the nice features discussed last time

AN EXAMPLE: MINIMAL SUPERGRAVITY

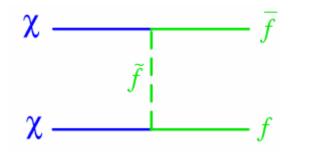
- Defined by 4+1 parameters
 - m₀: universal scalar mass
 - M_{1/2}: universal gaugino mass
 - A₀: universal trilinear scalar coupling
 - $tan\beta$: ratio of Higgs vevs
 - sign(μ): $|\mu|$ determined by EWSB
- Includes naturalness, force unification, radiative EWSB
- LSP candidates: Slepton, neutralino

mSUGRA LSP

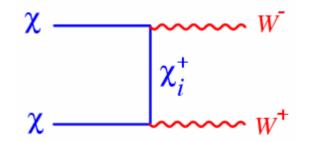
Bino fraction of χ LSP in mSUGRA with $A_0 = 0$, $\mu > 0$. Left shaded region has $\tilde{\tau}$ LSP. Remaining shaded region excluded by LEP chargino search.

NEUTRALINOS

The lightest neutralino is

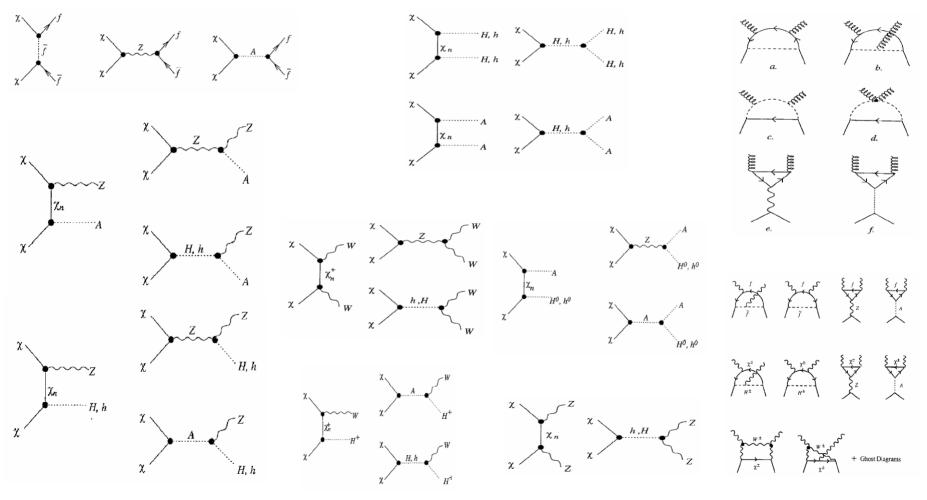

$$\chi = a_{\tilde{B}}\tilde{B} + a_{\tilde{W}}\tilde{W}^{0} + a_{\tilde{H}_{u}}\tilde{H}_{u}^{0} + a_{\tilde{H}_{d}}\tilde{H}_{d}^{0}$$

Neutralino mass matrix:


$$\begin{pmatrix} M_1 & 0 & -m_Z c\beta s_W & m_Z s\beta s_W \\ 0 & M_2 & m_Z c\beta c_W & -m_Z s\beta c_W \\ -m_Z c\beta s_W & m_Z c\beta c_W & 0 & -\mu \\ m_Z s\beta s_W & -m_Z s\beta c_W & -\mu & 0 \end{pmatrix}$$

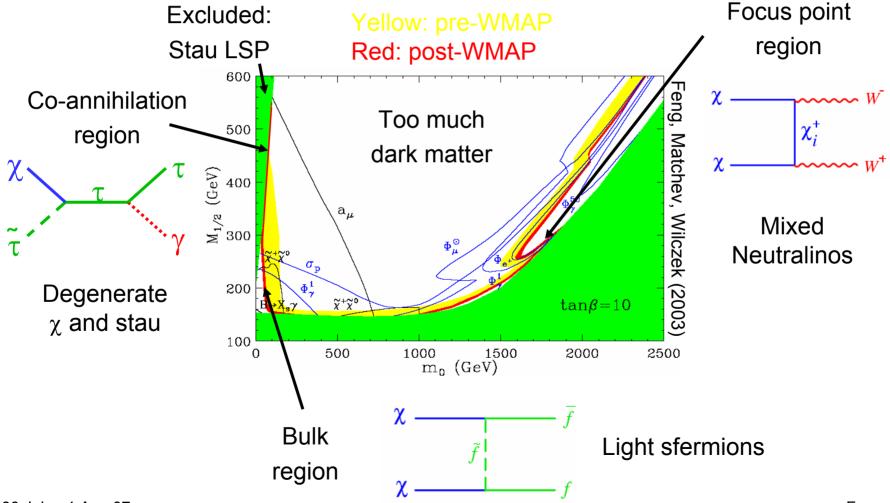
RELIC DENSITY

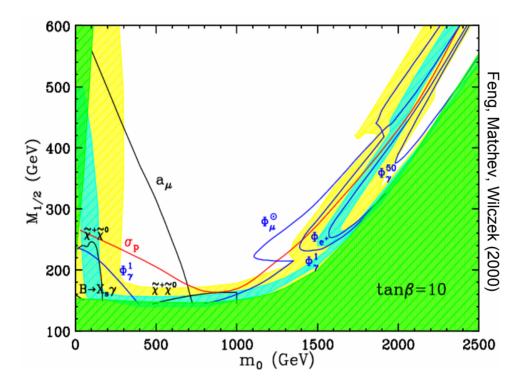
Neutralinos annihilate through *many* processes. [→]
 But there are essentially two classes:


• Fermion diagrams χ are Majorana fermions: Pauli exclusion $\rightarrow S = 0$ *L* conservation $\rightarrow P$ wave suppression m_f/m_W suppression

 Gauge boson diagrams suppressed for χ ≈ Bino

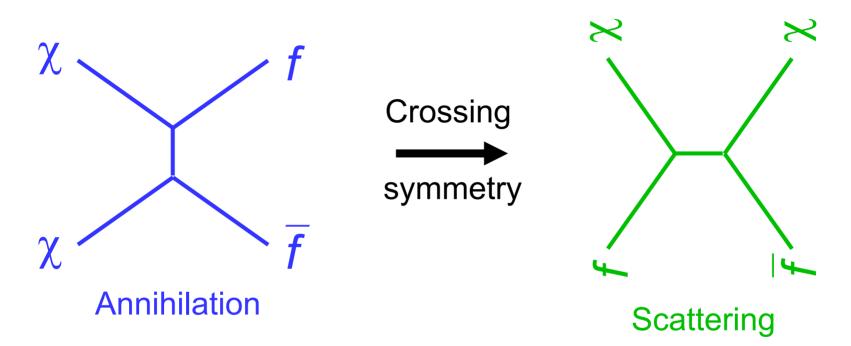
Bottom line: annihilation is typically suppressed, $\Omega_{DM}h^2$ is typically high


Contributions to Neutralino WIMP Annihilation


Jungman, Kamionkowski, Griest (1995)

Cosmologically Preferred SUSY

Typically get too much DM, but there are generic mechanisms for reducing it



Implications for Detection

Many diverse experiments are promising in the cosmologically preferred regions

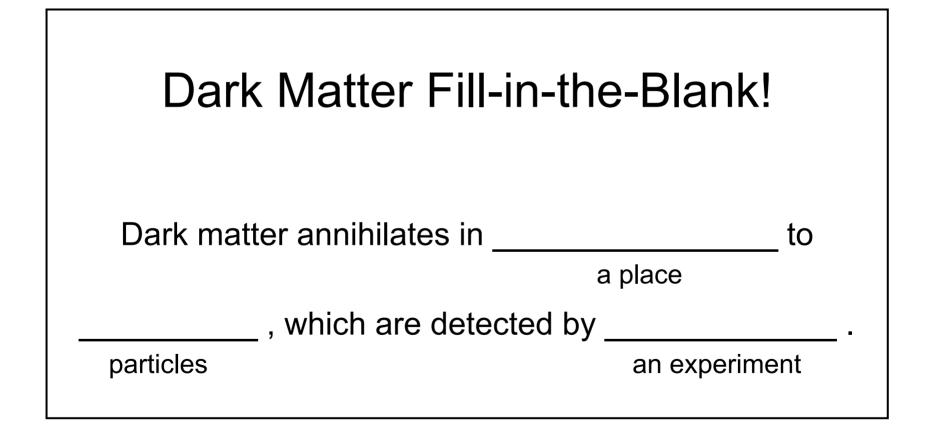
WIMP DETECTION

Correct relic density → Efficient annihilation then
 → Efficient annihilation now (indirect detection)
 → Efficient scattering now (direct detection)

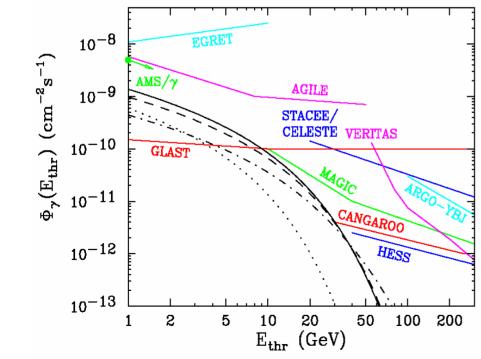
DIRECT DETECTION


• WIMP essentials:

v ~ 10⁻³ c

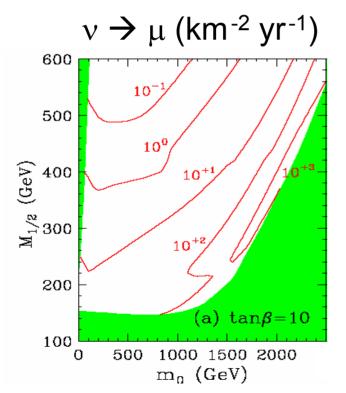

Kinetic energy ~ 100 keV

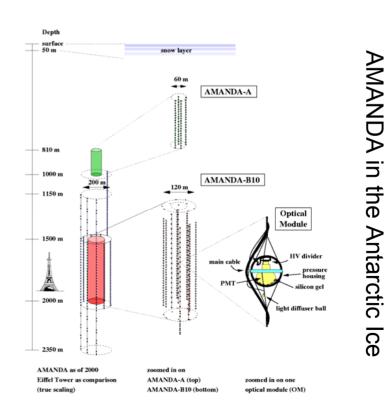
Local density ~ 1 / liter

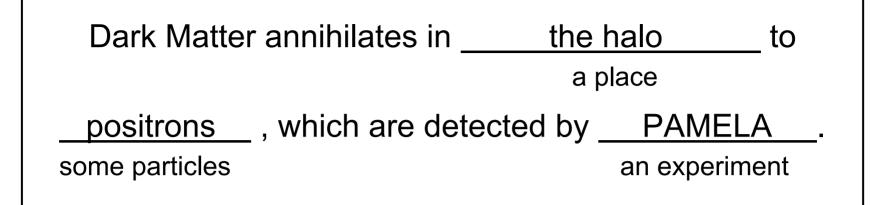

 Detected by recoils off ultra-sensitive underground detectors

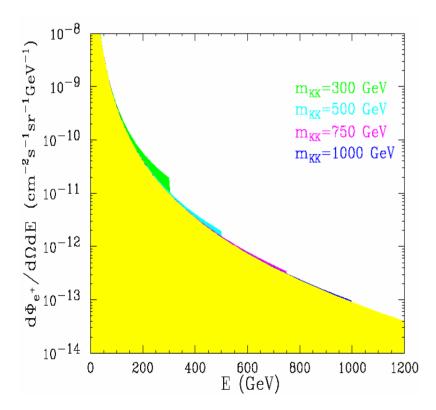
Indirect Detection

Dark Matter annihilates in <u>the galactic center</u> to a place <u>photons</u>, which are detected by <u>HESS, GLAST, ...</u>. some particles an experiment




Typically $\chi\chi \not\rightarrow \gamma\gamma$, so $\chi\chi \rightarrow f\bar{f} \rightarrow \gamma$

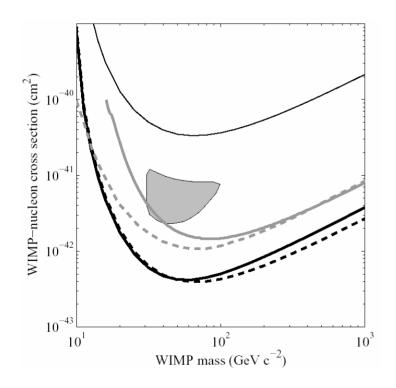



30 Jul – 1 Aug 07

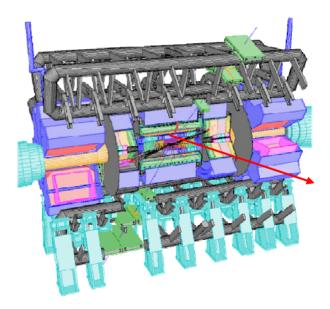
Dark Matter annihilates in <u>the center of the Sun</u> to a place <u>neutrinos</u>, which are detected by <u>AMANDA, IceCube</u>. some particles an experiment

NEUTRALINO PROSPECTS

If neutralinos contribute significantly to dark matter, we are likely to see signals before the end of the decade:

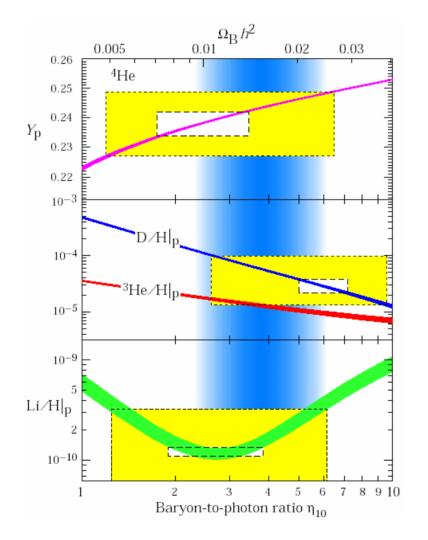

Direct dark matter searches Indirect dark matter searches

Tevatron at Fermilab

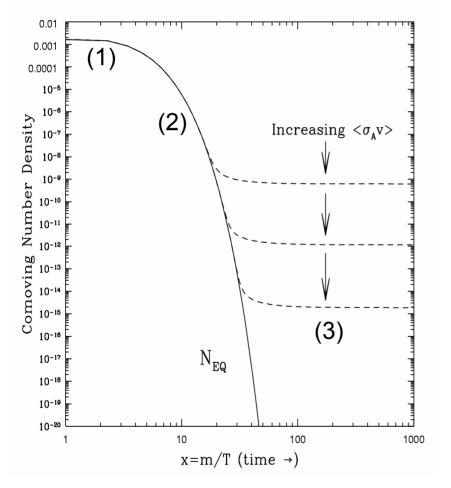

Large Hadron Collider at CERN

What then?

 Cosmo/astro can't discover SUSY

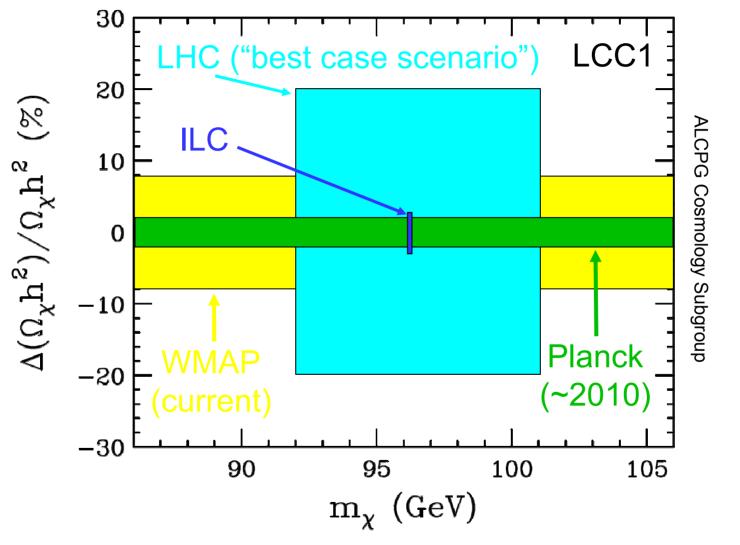


Particle colliders
 can't discover DM

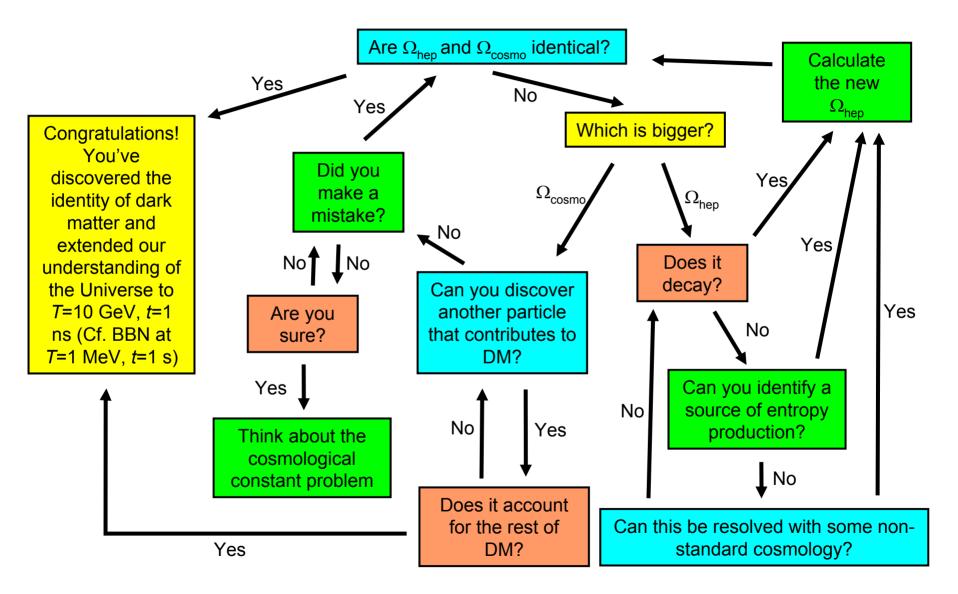

Lifetime > 10^{-7} s \rightarrow 10^{17} s ?

THE EXAMPLE OF BBN

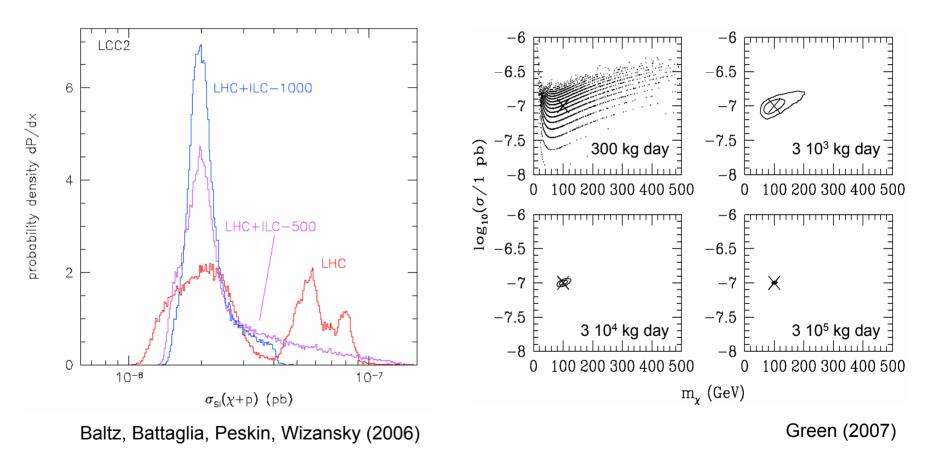
- Nuclear physics → light element abundance predictions
- Compare to light element abundance observations
- Agreement → we understand the universe back to
 - $T \sim 1 \text{ MeV}$
 - t ~ 1 sec


DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation


How well can we do?

RELIC DENSITY DETERMINATIONS



% level comparison of predicted Ω_{hep} with observed Ω_{cosmo}

IDENTIFYING DARK MATTER

DIRECT DETECTION IMPLICATIONS

Comparison tells us about local dark matter density and velocity profiles

INDIRECT DETECTION IMPLICATIONS

$$\frac{d\Phi_{\gamma}}{d\Omega dE} = \sum_{i} \underbrace{\frac{dN_{\gamma}^{i}}{dE}\sigma_{i}v\frac{1}{4\pi m_{\chi}^{2}}}_{\psi} \underbrace{\int_{\psi}\rho^{2}dl}_{\psi}$$

ParticleAstro-PhysicsPhysics

Gamma ray fluxes factorize

COLLIDERS ELIMINATE PARTICLE PHYSICS UNCERTAINTIES, ALLOW ONE TO PROBE ASTROPHYSICAL DISTRIBUTIONS

LECTURE 2 SUMMARY

- Neutralinos emerge as excellent dark matter candidates in many supersymmetric models
- Promising prospects for direct detection, indirect detection, and colliders
- At the same time, great progress requires synergy: comparisons may lead to discovery of the identity of dark matter, require the existence of another component, tell us about the distribution of dark matter in the galaxy, structure formation

OUTLINE

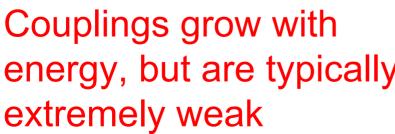
LECTURE 1: SUSY ESSENTIALS

Standard Model; SUSY Motivations; LSP Stability and Candidates

LECTURE 2: NEUTRALINOS

Properties; Production; Direct Detection; Indirect Detection; Collider Signals

LECTURE 3: GRAVITINOS


Properties; Production; Astrophysical Detection; Collider Signals

GRAVITINO COSMOLOGY

- Neutralinos (and all WIMPs) are cold and weaklyinteracting. Is this a universal prediction of SUSY DM?
- No! Here, we'll consider the gravitino, a SUSY dark matter candidate with completely different, but equally rich, implications for particle physics and cosmology
- In some cases, the gravitino has identical motivations to neutralinos, preserving even the WIMP relic abundance "coincidence"

Gravitinos

- SUSY: graviton $G \rightarrow$ gravitino \tilde{G}
- Mass: in gravity-mediated SUSY breaking, expect
 ~ 100 GeV 1 TeV
- *G* interactions couple particles to their superpartners

$$-\frac{i}{8M_{\rm Pl}}\bar{\tilde{G}}_{\mu}\left[\gamma^{\nu},\gamma^{\rho}\right]\gamma^{\mu}\tilde{B}F_{\nu\rho}$$

$$E/M_{\rm Pl}$$

$$\tilde{G}$$

$$B_{\mu}$$

$$\tilde{B}$$

Gravitino Production 1: Thermal

- Gravitinos are the original SUSY DM. First ideas: If the universe cools from $T \sim M_{\rm Pl}$, gravitinos decouple while relativistic, expect $n_{\tilde{G}} \sim n_{\rm eq}$.
- Stable:

$$\Omega_{\tilde{G}} < 1 \Rightarrow m_{\tilde{G}} < 1 \text{ keV}$$

(cf. neutrinos). (Current constraints \rightarrow too hot.)

 $\tau_{\tilde{G}} \sim \frac{M_{\rm Pl}^2}{m_{\tilde{G}}^3} \sim 1 \ {\rm yr} \left[\frac{100 \ {\rm GeV}}{m_{\tilde{G}}} \right]^3$

Unstable:

Decay before BBN \rightarrow $m_{\tilde{G}} > 10-100 \text{ TeV}$

Pagels, Primack (1982)

Weinberg (1982)

Both inconsistent with TeV mass range

Gravitino Production 2: Reheating

- More modern view: gravitino density is diluted by inflation.
- But gravitinos regenerated in reheating. What happens?

$$\sigma_{\rm SM} n \sim T \gg H \sim \frac{T^2}{M_{\rm Pl}} \gg \sigma_{\tilde{G}} n \sim \frac{T^3}{M_{\rm Pl}^2}$$

SM interaction rate >> expansion rate >> \tilde{G} interaction rate

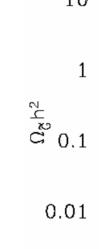
• Thermal bath of SM particles and superpartners: occasionally they produce a gravitino: $f f \rightarrow f \tilde{G}$

Gravitino Production 2: Reheating

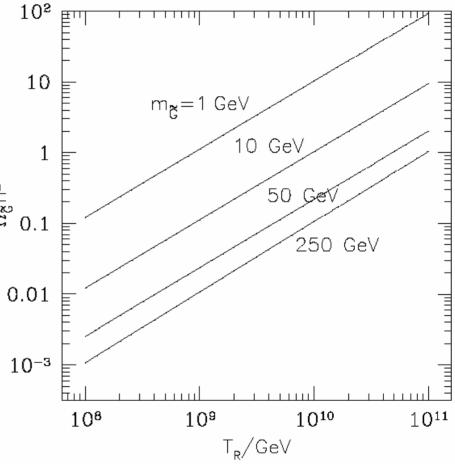
• The Boltzmann $\frac{a}{a}$

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \begin{bmatrix} n^2 - n_{eq}^2 \end{bmatrix}$$

Dilution from $f \tilde{G} \to f \bar{f}$ $f \bar{f} \to f \tilde{G}$


Λ

- Change variables: $t \to T$ $n \to Y \equiv \frac{n}{s}$
- New Boltzmann $\frac{dY}{dT} = -\frac{\langle \sigma_{\tilde{G}} v \rangle}{HTs} n^2 \sim \langle \sigma_{\tilde{G}} v \rangle \frac{T^3 T^3}{T^2 TT^3}$
- Simple: Y ~ reheat temperature

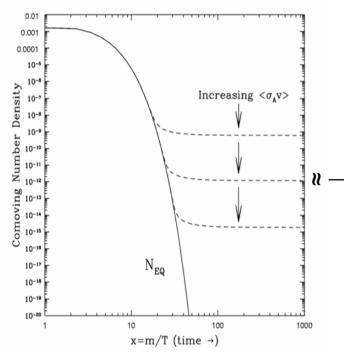

Bounds on T_{RH}

 $<\sigma v >$ for important production processes:

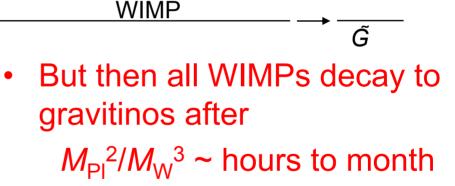
	process i	$ \mathcal{M}_i ^2 / \frac{g^2}{M^2} \left(1 + \frac{m_{\tilde{g}}^2}{3m_{\tilde{G}}^2}\right)$
А	$g^a + g^b \rightarrow \tilde{g}^c + \tilde{G}$	$4(s+2t+2\frac{t^2}{s}) f^{abc} ^2$
В	$g^a + \tilde{g}^b \rightarrow g^c + \tilde{G}$	$-4(t+2s+2\frac{s^2}{t}) f^{abc} ^2$
\mathbf{C}	$\tilde{q}_i + g^a \to q_j + \tilde{G}$	$2s T^a_{ji} ^2$
D	$g^a + q_i \rightarrow \tilde{q}_j + \tilde{G}$	$-2t T^a_{ji} ^2$
Е	$\bar{\tilde{q}}_i + q_j \longrightarrow g^a + \tilde{G}$	$-2t T^a_{ji} ^2$
F	$\tilde{g}^a + \tilde{g}^b \rightarrow \tilde{g}^c + \tilde{G}$	$-8 \frac{(s^2+st+t^2)^2}{st(s+t)} f^{abc} ^2$
G	$q_i + \tilde{g}^a \to q_j + \tilde{G}$	$-4(s+\tfrac{s^2}{t}) T^a_{ji} ^2$
Н	$\tilde{q}_i + \tilde{g}^a \to \tilde{q}_j + \tilde{G}$	$-2(t+2s+2\frac{s^2}{t}) T^a_{ji} ^2$
Ι	$q_i + \bar{q}_j \longrightarrow \tilde{g}^a + \tilde{G}$	$-4(t+\tfrac{t^{2}}{s}) T^{a}_{ji} ^{2}$
J	$\tilde{q}_i + \bar{\tilde{q}}_j \rightarrow \tilde{g}^a + \tilde{G}$	$2(s+2t+2\frac{t^2}{s}) T^a_{ji} ^2$

- $T_{\rm RH} < 10^8 10^{10}$ GeV; constrains inflation
- \tilde{G} can be DM if bound saturated

Bolz, Brandenburg, Buchmuller (2001)


Gravitino Production 3: Late Decay

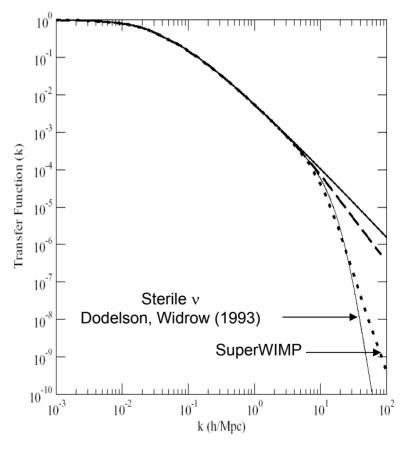
- What if gravitinos are diluted by inflation, and the universe reheats to low temperature?
- \tilde{G} not LSP \tilde{G} LSP



 No impact – assumption of • A new source of gravitinos Lectures 1 and 2
 Feng, Rajaraman, Takayama (2003)

Gravitino Production 3: Late Decay

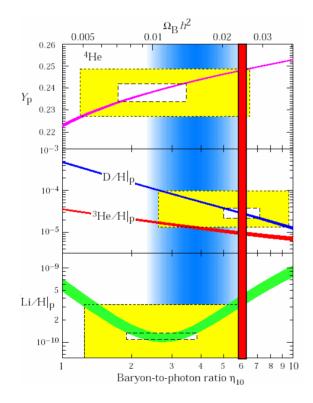
- Suppose gravitinos *G̃* are the LSP
- WIMPs freeze out as usual


Gravitinos naturally inherit the right density from WIMPs, but interact only gravitationally – they are superWIMPs

SuperWIMP Detection

- SuperWIMPs evade all direct, indirect dark matter searches
- But cosmology is complementary: Superweak interactions → very late decays to gravitinos → observable consequences
- Signals
 - Small scale structure
 - Big Bang nucleosynthesis
 - CMB μ distortions

SMALL SCALE STRUCTURE

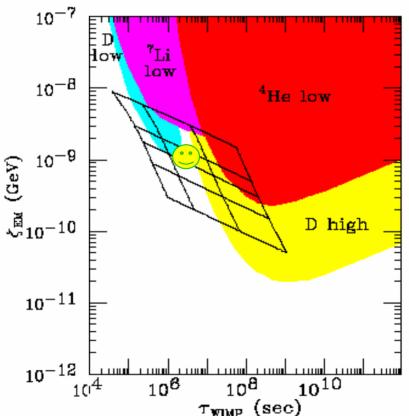

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by λ_{FS} , Q
- Warm DM with cold DM pedigree
- SUSY does not predict only CDM; small scale structure constrains SUSY
 - Dalcanton, Hogan (2000)
 - Lin, Huang, Zhang, Brandenberger (2001)
 - Sigurdson, Kamionkowski (2003)
 - Profumo, Sigurdson, Ullio, Kamionkowski (2004) Kaplinghat (2005)
 - Cembranos, Feng, Rajaraman, Takayama (2005) Strigari, Kaplinghat, Bullock (2006)
 - Bringmann, Borzumati, Ullio (2006)

Kaplinghat (2005)

BIG BANG NUCLEOSYNTHESIS

Late decays may modify light element abundances

Fields, Sarkar, PDG (2002)


After WMAP

- $\eta_D = \eta_{CMB}$
- Independent ⁷Li measurements are all low by factor of 3:

$${}^{7}\text{Li/H} = 1.5^{+0.9}_{-0.5} \times 10^{-10} \quad (95\% \text{ CL}) \ [27]$$

$${}^{7}\text{Li/H} = 1.72^{+0.28}_{-0.22} \times 10^{-10} \ (1\sigma + \text{sys}) \ [28]$$

$${}^{7}\text{Li/H} = 1.23^{+0.68}_{-0.32} \times 10^{-10} \ (\text{stat} + \text{sys}, 95\% \text{ CL}) \ [29]$$

BBN EM PREDICTIONS

- Consider $\tilde{\tau} \to \tilde{G} \tau$
- Grid: Predictions for $m_{\tilde{G}} = 100 \text{ GeV} - 3 \text{ TeV} \text{ (top to bottom)}$ $\Delta m = 600 \text{ GeV} - 100 \text{ GeV} \text{ (left to right)}$
- Some parameter space excluded, but much survives
- SuperWIMP DM naturally explains ⁷Li !

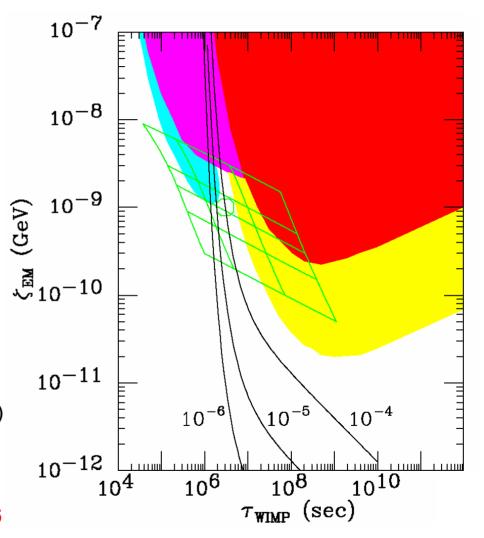
BBN RECENT DEVELOPMENTS

- Much recent progress, results depend sensitively on what particle decays to gravitino.
- Hadronic decays are important
 - constrain $\chi \rightarrow Z \tilde{G} \rightarrow q q \tilde{G}$
 - Slepton, sneutrino decays ok

Kawasaki, Kohri, Moroi (2004); Jedamzik (2004); Feng, Su, Takayama (2004); Jedamzik, Choi, Roszkowski, Ruiz de Austri (2005)

- Charged particles catalyze BBN: ⁴He X^- + $d \rightarrow$ ⁶Li + X^-
 - Constrain $\tilde{\tau} \rightarrow \tilde{G} \tau$ to lifetimes < 10⁴ s, or maybe 10⁶ s ok
 - Neutralino, sneutrino decays ok

Pospelov (2006); Kaplinghat, Rajaraman (2006); Kohri, Takayama (2006); Cyburt, Ellis, Fields, Olive, Spanos (2006); Hamaguchi, Hatsuda, Kamimura, Kino, Yanagida (2007); Bird, Koopmans, Pospelov (2007); Takayama (2007); Jedamzik (2007)


Cosmic Microwave Background

- Late decays may also distort the CMB spectrum
- For 10⁵ s < τ < 10⁷ s, get "μ distortions":

$$e^{E/(kT)+\mu} - 1$$

μ=0: Planckian spectrum μ≠0: Bose-Einstein spectrum Hu, Silk (1993)

Current bound: |μ| < 9 x 10⁻⁵
 Future (DIMES): |μ| ~ 2 x 10⁻⁶

SUPERWIMPS AT COLLIDERS

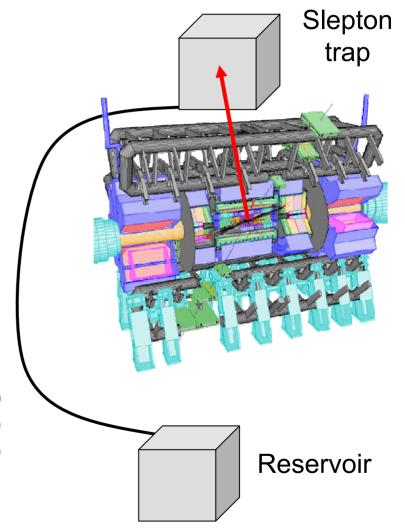
 Each SUSY event may produce 2 metastable sleptons
 Spectacular signature: slow, highly-ionizing charged tracks

Current bound (LEP): $m_{\tilde{1}} > 99 \text{ GeV}$

Tevatron reach: $m_{\gamma} \sim 180$ GeV for 10 fb⁻¹ (now?)

LHC reach: $m_{\gamma} \sim 700$ GeV for 100 fb⁻¹

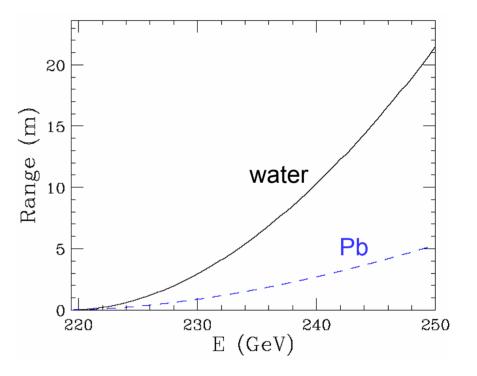
Drees, Tata (1990) Goity, Kossler, Sher (1993) Feng, Moroi (1996)


Hoffman, Stuart et al. (1997) Acosta (2002)

. . .

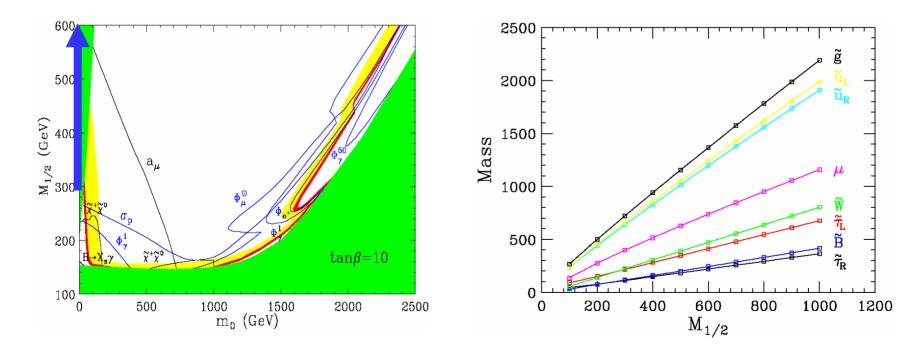
Slepton Trapping

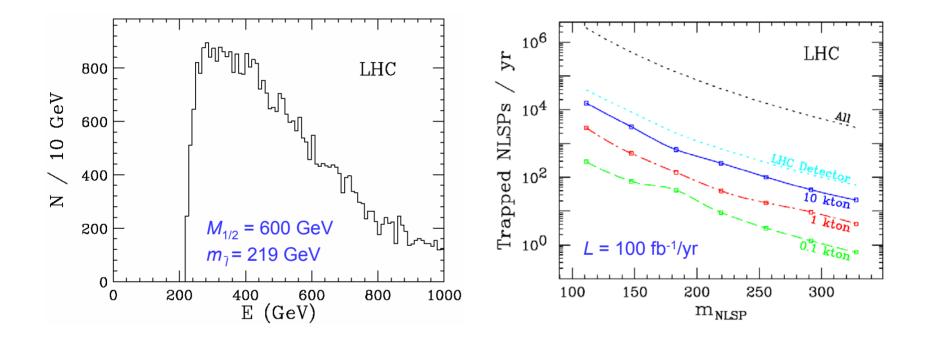
- Sleptons can be trapped and moved to a quiet environment to study their decays
- Crucial question: how many can be trapped by a reasonably sized trap in a reasonable time?


Feng, Smith (2004) Hamaguchi, Kuno, Nakawa, Nojiri (2004) De Roeck et al. (2005)

Slepton Range

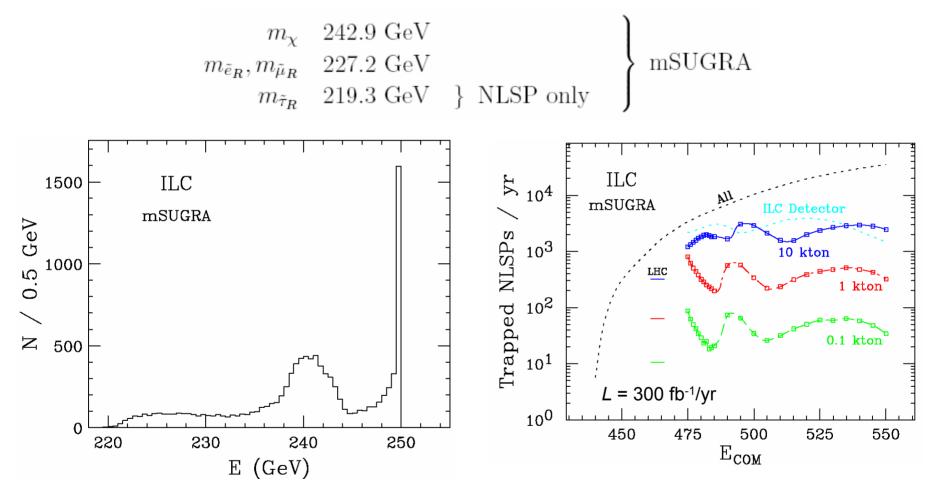
 Ionization energy loss described by Bethe-Bloch equation:


$$\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I\sqrt{1 + \frac{2m_e \gamma}{M} + \frac{m_e^2}{M^2}}} \right) - \beta^2 - \frac{\delta}{2} \right]$$


m₇ = 219 GeV

Model Framework

- Results depend heavily on the entire SUSY spectrum
- Consider mSUGRA with $m_0 = A_0 = 0$, $\tan\beta = 10$, $\mu > 0$ $M_{1/2} = 300, 400,..., 900 \text{ GeV}$



Large Hadron Collider

Assume 1 m thick shell of water (10 kton) Sleptons trapped: ~1%, or 10 to 10⁴ sleptons

International Linear Collider

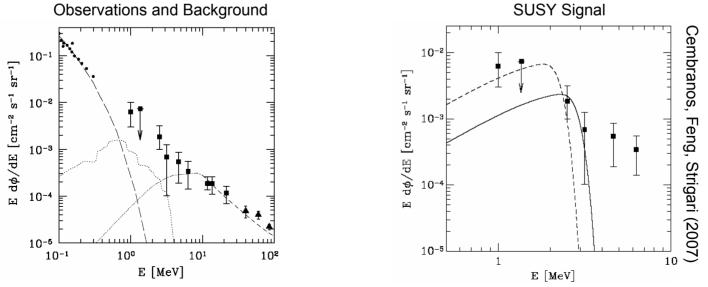
Sleptons are slow, most can be caught in 10 kton trap Factor of ~10 improvement over LHC

IMPLICATIONS FROM DECAYS TO GRAVITINOS

$$\tau(\tilde{l} \to l\tilde{G}) = \frac{6}{G_N} \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^5} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^{-4}$$

- Measurement of τ , $m_{\tilde{l}}$ and $E_{l} \rightarrow m_{\tilde{G}}$ and G_{N}
 - Probes gravity in a particle physics experiment!
 - Measurement of G_N on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant

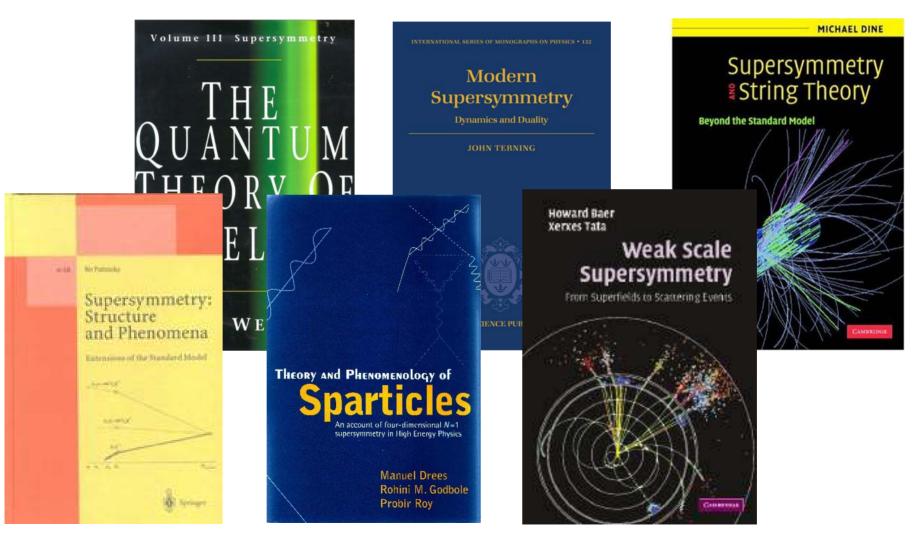
Hamaguchi et al. (2004); Takayama et al. (2004)


ARE WIMPS STABLE?

• Not necessarily. In fact, they can be decaying now:

$$\chi \rightarrow \gamma \tilde{G}$$

• Signals in the diffuse photon flux, completely determined by 1 parameter:


$$\tau \simeq \frac{3\pi}{b\cos^2\theta_W} \frac{M_P^2}{(\Delta m)^3} \simeq \frac{4.7 \times 10^{22} \text{ s}}{b} \left[\frac{\text{MeV}}{\Delta m}\right]^3$$

LECTURE 3 SUMMARY

- Gravitinos are excellent SUSY dark matter candidates
- Many new astrophysical implications for small scale structure, BBN, CMB, colliders
- If dark matter is at the weak scale, we are likely to make great progress in identifying it in the coming years

RECENT BOOKS

