ILC AND NEW DEVELOPMENTS IN COSMOLOGY

Jonathan Feng University of California, Irvine BILCW07 5 February 2007

Graphic: N. Graf

COSMOLOGICAL REVOLUTION

Remarkable agreement

Dark Matter: $23\% \pm 4\%$ Dark Energy: $73\% \pm 4\%$ [Baryons: $4\% \pm 0.4\%$ Neutrinos: $2\% (\Sigma m_v/eV)$]

Remarkable precision (~10%)

Remarkable results

DARK MATTER QUESTIONS

- What is its mass?
- What is its spin?
- What are its other quantum numbers and interactions?
- Is it absolutely stable?
- What is the symmetry origin of the dark matter particle?
- Is dark matter composed of one particle species or many?
- How was it produced?
- When was it produced?
- Why does Ω_{DM} have the observed value?
- What was its role in structure formation?
- How is dark matter distributed now?

DARK ENERGY QUESTIONS

- What is it?
- Why not $\Omega_{\Lambda} \sim 10^{120}$?
- Why not $\Omega_{\Lambda} = 0$?
- Does it evolve?

BARYON QUESTIONS

- Why not $\Omega_{\rm B} \approx 0$?
- Related to leptogenesis, leptonic CP violation?
- Where are all the baryons?

What tools do we need to answer these?

PARTICLE PHYSICS AT THE ENERGY FRONTIER

DARK MATTER

• We know how much there is:

 $\Omega_{\rm DM}$ = 0.23 ± 0.04

• We know what it's not:

Not short-lived: $\tau > 10^{10}$ years Not baryonic: $\Omega_B = 0.04 \pm 0.004$ Not hot: must be "slow" to seed structure formation

DARK MATTER CANDIDATES

- There are many candidates
- Masses and interaction strengths span many, many orders of magnitude
- But not all are equally motivated. Focus on:
 - WIMPs
 - SuperWIMPs

Dark Matter Scientific Assessment Group, U.S. DOE/NSF/NASA HEPAP/AAAC Subpanel (2007)

Some Dark Matter Candidate Particles

WIMPS

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi\chi \leftrightarrow \overline{f}f$$

(2) Universe cools: $\chi \chi \neq \overline{f} f$

(3) χ s "freeze out":

 The amount of dark matter left over is inversely proportional to the annihilation cross section:

 $\Omega_{\rm DM} \sim \langle \sigma_{\rm A} v \rangle^{-1}$

Scherrer, Turner (1986)

- What is the constant of proportionality?
- Impose a natural relation:

 $\sigma_{\rm A} \!= \! k \alpha^2 \! / m^2$, so $\Omega_{DM} \! \sim m^2$

[band width from k = 0.5 - 2, S and P wave]

 $\Omega_{DM} \sim 0.1$ for m ~ 100 GeV – 1 TeV Cosmology alone tells us we should explore the weak scale

STABILITY

• This assumes a *stable* new particle, but this is generic:

Problems (proton decay, extra particles, EW precision constraints...) Discrete symmetry Stability

 Dark matter is easier to explain than no dark matter, and with the proliferation of EWSB models has come a proliferation of WIMP possibilities.

NON-DECOUPLING

 New physics does not decouple cosmologically:

 $\Omega \sim m^2$

There are loopholes, but very heavy particles are disfavored, independent of naturalness.

Universal Extra Dimensions

Mass of Dark Matter Particle from Extra Dimensions (TeV)

WIMPS FROM SUPERSYMMETRY

Goldberg (1983); Ellis et al. (1983)

Supersymmetry: many motivations. For every known particle X, predicts a partner particle \tilde{X}

Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$

In many models, χ is the lightest supersymmetric particle, stable, neutral, weakly-interacting, mass ~ 100 GeV. All the right properties for WIMP dark matter!

Minimal Supergravity

Cosmology excludes many possibilities, favors certain regions

WIMPS FROM EXTRA DIMENSIONS

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

 Extra spatial dimensions could be curled up into small circles of radius R

 Particles moving in extra dimensions appear as a set of copies of SM particles New particle masses are integer multiples of

 $m_{\rm KK} = R^{-1}$

Minimal Universal Extra Dimensions

5 Feb 07

WIMP DETECTION

Correct relic density → Efficient annihilation then → Efficient annihilation now → Efficient scattering now

DIRECT DETECTION

• WIMP essentials:

v ~ 10⁻³ c

Kinetic energy ~ 100 keV Local density ~ 1 / liter

- (Coherent) spin-independent scattering most promising for most WIMP candidates
- Theorists: χq scattering Expts: χ nucleus scattering Compromise: χp scattering

Indirect Detection

PROSPECTS

If the relic density "coincidence" is no coincidence and DM is WIMPs, the new physics behind DM will very likely be discovered in the next few years:

Direct dark matter searches Indirect dark matter searches

The Tevatron at Fermilab The Large Hadron Collider at CERN

What then?

 Cosmology can't discover SUSY

Particle colliders
 can't discover DM

Lifetime > 10^{-7} s \rightarrow 10^{17} s ?

THE EXAMPLE OF BBN

- Nuclear physics → light element abundance predictions
- Compare to light element abundance observations
- Agreement → we understand the universe back to
 - $T \sim 1 \text{ MeV}$
 - t ~ 1 sec

DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation

How well can we do?

Contributions to Neutralino WIMP Annihilation

Jungman, Kamionkowski, Griest (1995)

QUANTITATIVE ANALYSIS OF DM

The Approach of the ALCPG Cosmology Group:

- Choose a concrete *example*: neutralinos
- Choose a simple model framework that encompasses many qualitatively different behaviors: mSUGRA
- Relax model-dependent assumptions and determine parameters
- Identify cosmological, astroparticle implications

Neutralino DM in mSUGRA

Cosmology excludes much of parameter space (Ω_{γ} too big)

Cosmology focuses attention on particular regions (Ω_{χ} just right)

 $m_{1/2}$

Choose 4 representative points for detailed study Baer et al., ISAJET Gondolo et al., DARKSUSY Belanger et al., MICROMEGA

BULK REGION LCC1 (SPS1a)

 m_0 , $M_{1/2}$, A_0 , $tan\beta = 100$, 250, -100, 10 [μ >0, $m_{3/2}$ > m_{LSP}]

• Correct relic density obtained if χ annihilate efficiently through light sfermions:

 Motivates SUSY with light χ, *Ĩ*

Allanach et al. (2002)

PRECISION SUSY @ LHC

 LHC produces stronglyinteracting superpartners, which cascade decay

PRECISION SUSY @ ILC

- Exploit all properties
 - kinematic endpoints
 - threshold scans
 - e⁻ beam polarization
 - e⁻e⁻ option

	$m [{\rm GeV}]$	$\Delta m [\text{GeV}]$	Comments
$\tilde{\chi}_1^{\pm}$	176.4	0.55	simulation threshold scan , $100 \ { m fb}^{-1}$
$\tilde{\chi}_2^{\pm}$	378.2	3	estimate $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$, spectra $\tilde{\chi}_2^{\pm} \to Z \tilde{\chi}_1^{\pm}, W \tilde{\chi}_1^0$
$\tilde{\chi}_1^0$	96.1	0.05	combination of all methods
$\tilde{\chi}_2^0$	176.8	1.2	simulation threshold scan $\tilde{\chi}_2^0 \tilde{\chi}_2^0$, 100 fb ⁻¹
$\tilde{\chi}_3^0$	358.8	3-5	spectra $\tilde{\chi}_{3}^{0} \rightarrow Z \tilde{\chi}_{1,2}^{0}, \ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \\ \tilde{\chi}_{3}^{0} \tilde{\chi}_{4}^{0}, 750 \text{ GeV}, > 1000 \text{ fb}^{-1}$
$\tilde{\chi}_4^0$	377.8	3-5	spectra $\tilde{\chi}_{4}^{0} \to W \tilde{\chi}_{1}^{\pm}, \ \tilde{\chi}_{2}^{0} \tilde{\chi}_{4}^{0}, \tilde{\chi}_{3}^{0} \tilde{\chi}_{4}^{0}, 750 \text{ GeV}, > 1000 \text{ fb}^{-1}$
\tilde{e}_R	143.0	0.05	e^-e^- threshold scan, 10 fb ⁻¹
\tilde{e}_L	202.1	0.2	e^-e^- threshold scan 20 fb ⁻¹
$\tilde{\nu}_e$	186.0	1.2	simulation energy spectrum, 500 GeV, 500 fb ⁻¹
$\tilde{\mu}_R$	143.0	0.2	simulation energy spectrum, 400 GeV, 200 fb ⁻¹
$\tilde{\mu}_L$	202.1	0.5	estimate threshold scan, 100 fb $^{-1}$ [36]
$\tilde{\tau}_1$	133.2	0.3	simulation energy spectra, 400 GeV, 200 fb ⁻¹
$\tilde{\tau}_2$	206.1	1.1	estimate threshold scan, 60 fb $^{-1}$ [36]
\tilde{t}_1	379.1	2	estimate <i>b</i> -jet spectrum, $m_{\min}()$, 1TeV, 1000 fb ⁻¹

Must also verify insensitivity to all other parameters

RELIC DENSITY DETERMINATIONS

MODEL DEPENDENCE

 LHC/ILC determination of relic densities has now been studied by many groups.

> Allanach, Belanger, Boudjema, Pukhov (2004) Moroi, Shimizu, Yotsuyanagi (2005) Baltz, Battaglia, Peskin, Wizansky (2006)

 Bottom line: LHC results are not always good, but ILC removes degeneracies

IDENTIFYING DARK MATTER

DIRECT DETECTION IMPLICATIONS

INDIRECT DETECTION IMPLICATIONS

COLLIDERS ELIMINATE PARTICLE PHYSICS UNCERTAINTIES, ALLOW ONE TO PROBE ASTROPHYSICAL DISTRIBUTIONS

Very sensitive to halo profiles near the galactic center

SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

• Consider gravitinos (also KK gravitons, axinos, quintessinos, ...): spin 3/2, mass ~ M_W , couplings ~ M_W/M_*

Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Roszkowski et al. (2004); ...

• *Ĝ* not LSP

• Assumption of most of literature

 Completely different cosmology and physics

SUPERWIMP RELICS

Gravitinos naturally inherit the right density, but interact only gravitationally – they are superWIMPs, impossible to detect directly

WORST CASE SCENARIO?

Looks bad – dark matter couplings suppressed by 10⁻¹⁶

But, cosmology \rightarrow decaying WIMPs are sleptons: heavy, charged, live ~ a month – can be trapped, then moved to a quiet environment to observe decays.

How many can be trapped?

Hamaguchi, Kuno, Nakaya, Nojiri (2004) Feng, Smith (2004) De Roeck et al. (2005) Martyn (2006)

Large Hadron Collider

If squarks, gluinos light, many sleptons, but most are fast: O(1)% are caught in 10 kton trap

International Linear Collider

 $m_{\tilde{\tau}_R}$ 219.3 GeV } NLSP only

Novel use of tunable beam energy: adjust to produce slow sleptons, 75% are caught in 10 kton trap

IMPLICATIONS FROM SLEPTON DECAYS

$$\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4$$

- Measurement of Γ and $E_{I} \rightarrow m_{\tilde{G}}$ and M_{*}
 - Probes gravity in a particle physics experiment!
 - Measurement of G_{Newton} on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant
 - Early universe cosmology in the lab

Resolve cosmological discrepancies?

CDM is too cold:

BBN ⁷Li problem: Late decays can modify BBN

ays can modify BBN Late decays warm up DM $\Omega_{B}^{h^{2}} \Omega_{O} \Omega_{B}^{h^{2}} \Omega_{O} \Omega_{A}^{O} \Omega_{A}^{O}$

.. Feng 41

CONCLUSIONS

- Cosmology now provides sharp problems that are among the most outstanding in basic science today.
- They require new particle physics, cannot be solved by cosmological tools alone.
- In many cases, the quantitative precision of ILC is essential to determine qualitative answers.