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COSMOLOGY NEW PHYSICS
• Cosmology today provides 

much of the best evidence for 
new microphysics

• What can we learn from dark 
matter about SUSY – SUSY
breaking, its mediation, 
superpartner spectrum, 
expected signals?

• Work with Arvind Rajaraman, 
Fumihiro Takayama, Jose 
Ruiz Cembranos, Shufang
Su, Bryan Smith
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DARK MATTER: WHAT WE KNOW 

• How much there is:

ΩDM = 0.23 ± 0.04

• What it’s not:

Not short-lived: τ > 1010 years
Not baryonic: ΩB = 0.04 ± 0.004
Not hot: “slow” DM is required to form structure



20 June 06 Feng 4

DARK MATTER: WHAT WE DON’T KNOW

• What is its mass?
• What is its spin?
• What are its other quantum numbers and interactions?
• Is it absolutely stable?
• What is the origin of the dark matter particle?
• Is dark matter composed of one particle species or many?
• How was it produced?
• When was it produced?
• Why does ΩDM have the observed value?
• What was its role in structure formation?
• How is dark matter distributed now?
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Dark Matter Candidates

• Given the few constraints, it is not surprising that there are 
many candidates: axions, thermal gravitinos, neutralinos, 
Kaluza-Klein particles, wimpzillas, self-interacting particles, 
self-annihilating particles, fuzzy dark matter, 
superWIMPs,… 

• Masses and interaction strengths span many, many orders 
of magnitude

• But independent of cosmology, new particles are required 
to understand the weak scale.  What happens when we 
add these to the universe?
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Cosmological Implications

(1)

(2)

(3)

(1) Assume the new 
particle is initially in 
thermal equilibrium: 

χχ ↔ f f

(2) Universe cools:
N = NEQ ~ e−m/T

(3) χs “freeze out”:
N ~ const
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• The amount of dark matter 
left over is inversely 
proportional to the 
annihilation cross section:

ΩDM ~ <σAv>−1

• What is the constant of 
proportionality?

• Impose a natural relation:

σΑ = kα2/m2 ,  so ΩDM ∼ m2
HEPAP LHC/ILC Subpanel (2006)

[band width from k = 0.5 – 2, S and P wave]

ΩDM ~ 0.1 for m ~ 100 GeV – 1 TeV. 
Cosmology alone tells us we should explore the weak scale.
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IMPLICATIONS
• Electroweak theories often predict relevant amounts of 

dark matter.  In fact, dark matter is easier to explain than 
no dark matter: 

Exp. constraints ↔ discrete symmetries ↔ stable DM

• In SUSY, this requires that the gravitino be heavier than 
the neutralino. This disfavors low-scale (gauge-mediated) 
SUSY breaking, favors high-scale (gravity-mediated) SUSY 
breaking:

m3/2~F/MPl > mχ~F/Mmed Mmed ~ MPl, F ~ 1010 GeV

• SUSY does not decouple cosmologically: Ω ~ m2. Low 
energy SUSY is motivated independent of naturalness.
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NEAR FUTURE PROSPECTS
ATLASLHC
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Lyn Evans: 1 fb-1 in 2008 is guaranteed 
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IDENTIFYING DARK MATTER

(1)

(2)

(3)

• Particle physics σA, 
dark matter abundance 
prediction

• Compare to observed 
dark matter abundance

• How well can we do?
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Contributions to Neutralino
WIMP Annihilation
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RELIC DENSITY DETERMINATIONS

WMAP
(current)

Planck
(~2010)

LHC (“best case scenario”)

ILC

LCC1

Agreement identity of dark matter, understanding of universe 
back to t ~ 1 ns, T ~ 10 GeV (cf. BBN at t ~ 1 s, T ~ MeV)
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SuperWIMP Dark Matter 
Feng, Rajaraman, Takayama (2003)

• Collider signals (and other dark matter 
searches) rely on DM having weak force 
interactions.  Is this required?

• Strictly speaking, no – the only required DM 
interactions are gravitational.

• But the relic density “coincidence” strongly 
prefers weak interactions.

Is there an exception to this rule?
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SuperWIMPs: The Basic Idea
• High-scale SUSY breaking 

supergravity has a weak-scale 
mass G̃.  Suppose it’s the LSP. 

• WIMPs freeze out as usual

• But then all WIMPs decay to 
gravitinos after

MPl
2/MW

3 ~ a month
Gravitinos naturally inherit the right density, but interact only 

gravitationally – they are superWIMPs

G̃
WIMP≈
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SuperWIMP Implications

• SuperWIMPs evade all particle dark matter searches; all 
event rates R 10-32 R.

• Apparently even more troubling is the gravitino problem: 
late decays to the gravitino destroy the successes of Big 
Bang nucleosynthesis.  Weinberg noted that the 
superpartner mass scale should be > 10 TeV for decays 
to happens before BBN.

• The scenario appears excluded by cosmology and 
untestable in particle/astroparticle experiments.

Luckily, both conclusions are too hasty…
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Big Bang Nucleosynthesis
Late decays may modify light element abundances

Cyburt, Ellis, Fields, Olive (2002); Kawasaki et al. (2004); Jedamzik (2004); Cerdeno et al. (2005)
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Structure Formation

Cembranos, Feng, Rajaraman, Takayama (2005)
Kaplinghat (2005), Jedamzik (2005)

Cold dark matter (WIMPs) seeds 
structure formation. Simulations 
may indicate more central mass 
and more cuspy halos than 
observed – cold dark matter is 
too cold.

SuperWIMPs are produced at
t ~ month with large velocity, 
smooth out small scale 
structure.

SuperWIMPs combine Cold DM (Ω ~ 0.1) and Warm DM 
(structure formation) virtues.
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SUPERWIMPS AT THE LHC
• Cosmology metastable

charged sleptons with lifetimes 
of days to months

• Sleptons can be trapped and 
moved to a quiet environment to 
study their decays  l ̃ l G̃

• A 1 m thick shell of water can 
catch ~ 104 sleptons per year

Feng, Smith (2004)
Hamaguchi, Yuno, Nayaka, Nojiri (2004)

Ellis et al. (2005)

Slepton
trap

Reservoir
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What we learn from slepton decays
• We are sensitive to (M*-suppressed) gravitational effects in 

a particle physics experiment

• Measurement of ml̃ , Γ mG ̃
ΩG̃. SuperWIMP contribution to dark matter
F. Supersymmetry breaking scale
BBN, CMB, structure formation in the lab

• Measurement of ml̃ , Γ and El mG ̃ and M*
Measurement of GNewton on fundamental particle scale
Gravitino is graviton partner, can quantitatively confirm supergravity

Buchmuller, Hamaguchi, Ratz, Yanagida (2004)
Feng, Rajaraman, Takayama (2004)
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CONCLUSIONS
• Cosmology suggests there may be new particles at 

the weak scale, independent of naturalness

• In SUSY, dark matter relic density “coincidence”
high-scale (gravity-mediated) SUSY breaking

• If neutralino WIMPs, LHC will discover them in the 
next few years 

• If gravitino superWIMPs, LHC is likely to produce 
long-lived sleptons that decay to gravitinos, allowing 
the quantitative confirmation of supergravity
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