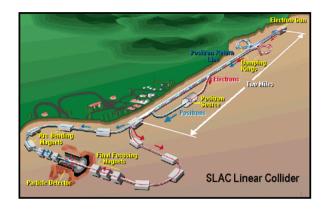
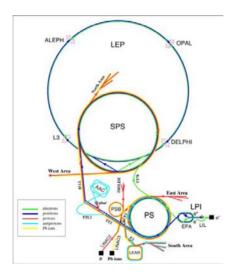

Black Holes and Extra Dimensions

Jonathan Feng UC Irvine

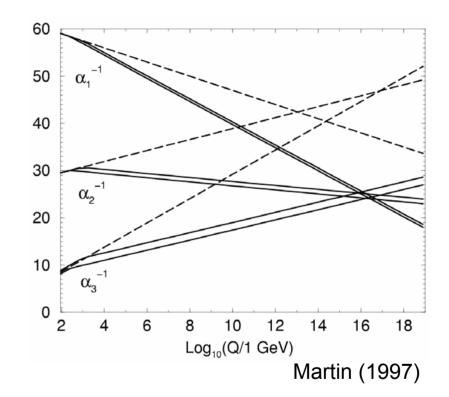

Harvey Mudd Colloquium 7 December 2004


The Standard Model

Carrier	Force	Group
γ photon	E&M	U(1)
<i>g</i> gluon	Strong	SU(3)
Z W	Weak	SU(2)

Precise Confirmation

In terms of coupling strengths:


$$\sim 10^{-8}$$
 $\frac{\Delta \alpha_2}{\alpha_2} \sim 10^{-3}$ $\frac{\Delta \alpha_3}{\alpha_3} \sim 10^{-2}$

 $\Delta \alpha_1$

 α_1

Force Unification

- Forces are similar in strength
- There is even a beautiful explanation of why the coupling constants have the values they do
- Unification at high energies and short distances (with supersymmetry)

Dashed – Standard Model Solid – Supersymmetry

What's Wrong with this Picture?

- The dog that didn't bark where's gravity?
- Many deep problems, but one obvious one:

Gravity is extraordinarily weak. It is important in everyday life only because it is universally attractive.

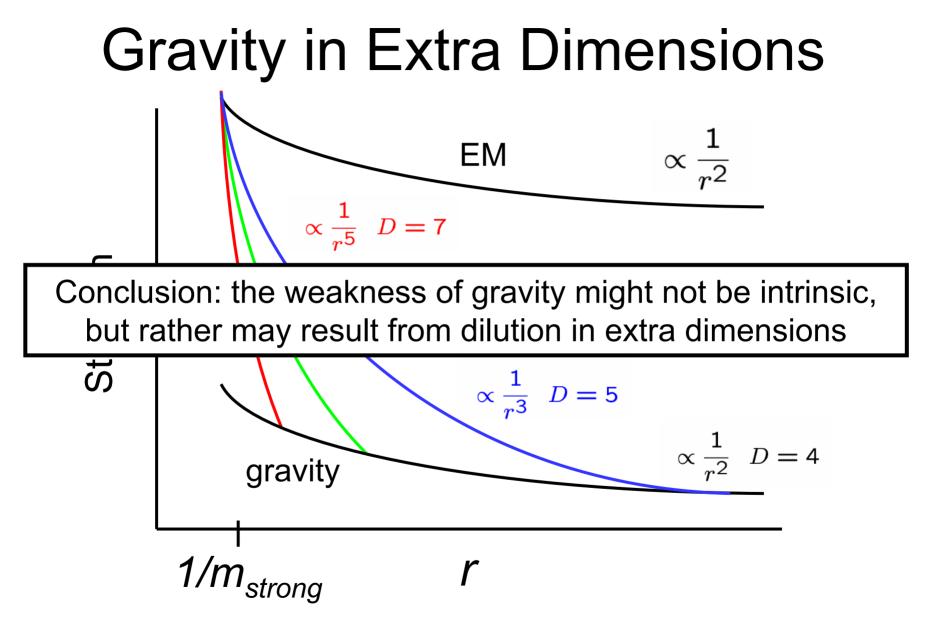
• More quantitatively:

$$F_{\mathsf{EM}} = \frac{q_1 q_2}{r^2} \qquad \qquad F_{\mathsf{gravity}} = G_N \frac{m_1 m_2}{r^2}$$

Even for the heaviest elementary particles (e.g., *W* bosons, top quarks)

$$F_{\text{gravity}} \sim 10^{-32} F_{\text{EM}}$$

- Gravity is comparable for masses (or energies) ~ 10¹⁵ TeV, far beyond experiment (M_{weak} ~ 1 TeV).
 - The Hierarchy Problem: Why is gravity so weak? Maybe it isn't...


Extra Dimensions

• Suppose photons are confined to *D*=4, but gravity propagates in *n* extra dims of size *L*.

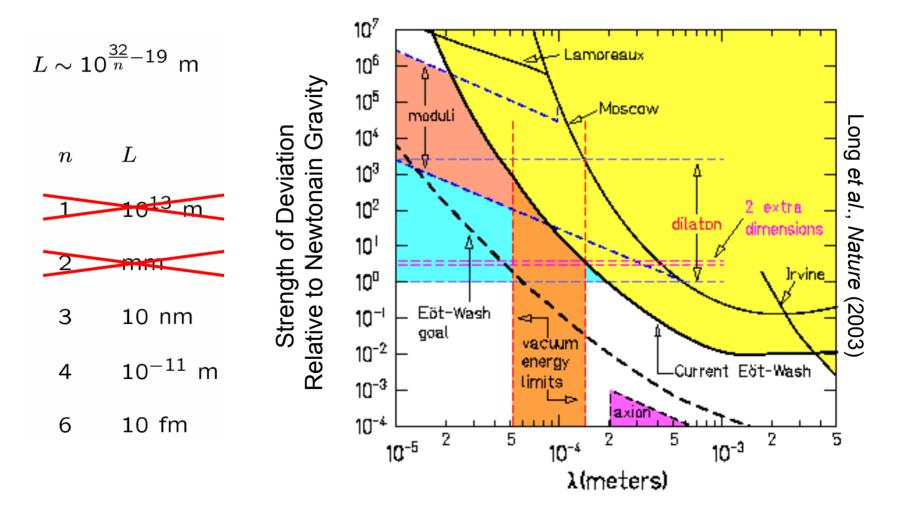
$$r \ll L, F_{gravity} \sim 1/r^{2+n}$$
 $r \gg L, F_{gravity} \sim 1/r^2$

7 December 2004

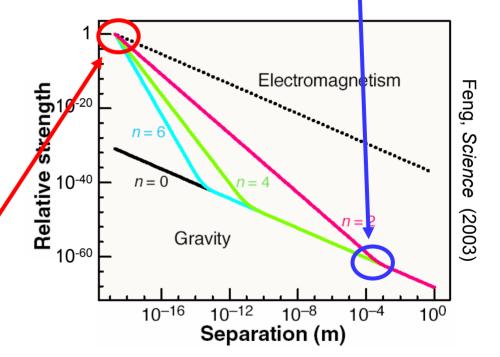
Strong Gravity at the Weak Scale

• Suppose m_{strong} is $M_{\text{weak}} \sim 1 \text{ TeV}$

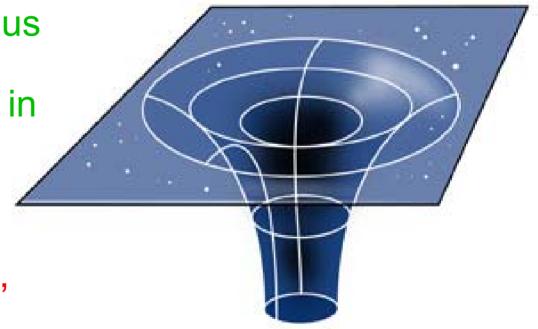
Arkani-Hamed, Dimopoulos, Dvali, PLB (1998) $L \sim 10^{-10}$


$$L \sim 10^{\frac{32}{n}-19} \text{ m}$$

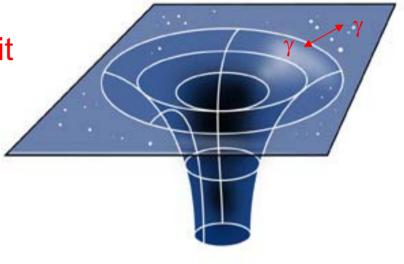
• The number of extra dims *n* then fixes *L*

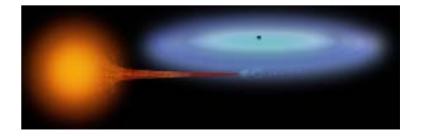

n	L
1	10 ¹³ m
2	mm
3	10 nm
4	$10^{-11} { m m}$
6	10 fm

Tests of Newtonian Gravity

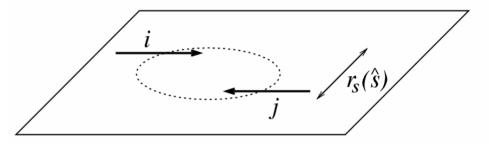

 Astrophysical probes (supernova cooling) provide even more stringent constraints, eliminate n = 2,3,4, but are ineffective for n >4.

• A better strategy: probe small distances, high energies.


Black Holes


- Solutions to Einstein's equations
- Schwarzschild radius r_s ~ M_{BH} – requires large mass/energy in small volume
- Light and other particles do not escape; classically, BHs are stable

Black Hole Evaporation


- Quantum mechanically, black holes are not stable – they emit Hawking radiation
- Temperature: $T_{\rm H} \sim 1/M_{\rm BH}$ Lifetime: $\tau \sim (M_{\rm BH})^3$
- For M_{BH} ~ M_{sun}, T_H ~ 0.01 K. Astrophysical BHs emit only photons, live ~ forever
- Form by accretion

BHs from Particle Collisions

 BH creation requires $E_{\rm COM} > m_{\rm strong}$

Penrose (1974) D'Eath, Payne, PRD (1992) Banks, Fischler (1999)

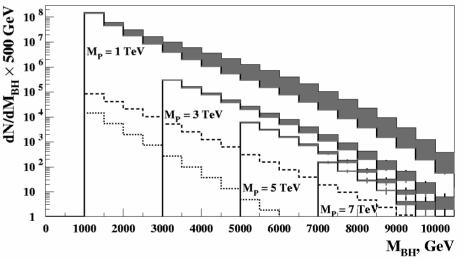
 In 4D, m_{strong} ~ 10¹⁵ TeV, far above accessible energies $\sim TeV$

But with extra dimensions, $m_{\text{strong}} \sim \text{TeV}$ is possible, can create micro black holes in particle collisions!

Micro Black Holes

- Where can we find them?
- What is the production rate?
- How will we know if we've seen one?

"It's black, and it looks like a hole. I'd say it's a black hole."

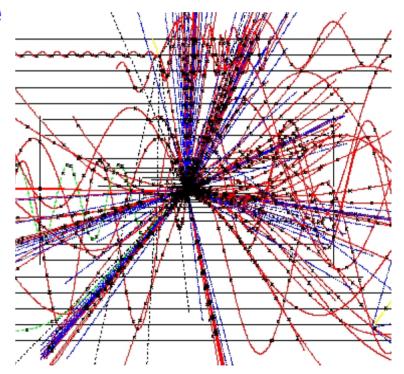

Black Holes at Colliders

• BH created when two particles of high enough energy pass within $\sim r_s$.

Eardley, Giddings, PRD (2002) Yoshino, Nambu, PRD (2003)

- Large Hadron Collider: $E_{COM} = 14 \text{ TeV}$ $pp \rightarrow BH + X$
- LHC may produce 1000s of black holes, starting ~ 2008

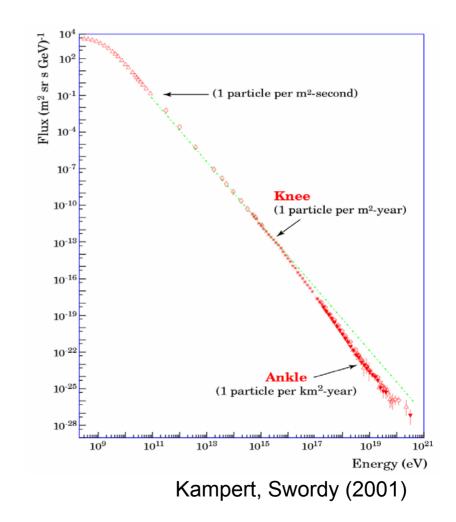
$$\sigma_{pp \to BH}(\tau_{\min}, s) = \sum_{ij} \int_{\tau_{\min}}^{1} d\tau \int_{\tau}^{1} \frac{dx}{x} f_i(x) f_j(\tau/x) \hat{\sigma}_{ij}$$


Dimopoulos, Landsberg, PRL (2001)

Event Characteristics

• For microscopic BHs,

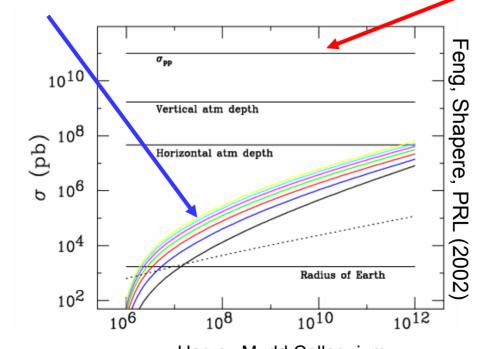
 $\tau \sim (M_{\rm BH})^3 \sim 10^{-27}$ s, decays are essentially instantaneous


- *T*_H ~ 1/*M*_{BH} ~ 100 GeV, so not just photons:
 q,*g*: *I*: γ : ν,*G* = 75 : 15 : 2 : 8
- Multiplicity ~ 10
- Spherical events with leptons, many quark and gluon jets

De Roeck (2002)

Black Holes from Cosmic Rays

- Cosmic rays Nature's free collider
- Observed events with 10^{19} eV produces $E_{\text{COM}} \sim 100 \text{ TeV}$
- But meager fluxes. Can we harness this energy?



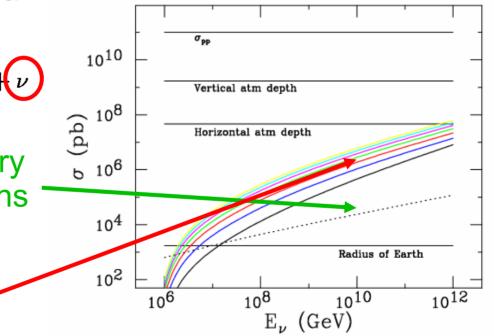
1st Attempt

 Look for cosmic ray protons to create BHs in the atmosphere:

 $pp \rightarrow BH + X$

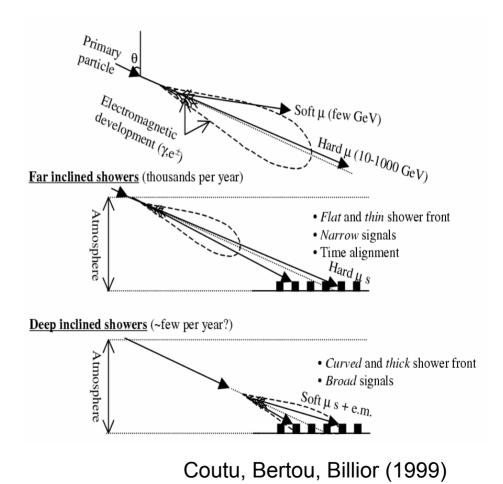
Unfortunately, protons
 interact through standard
 strong interactions long
 before they create a BH.

7 December 2004

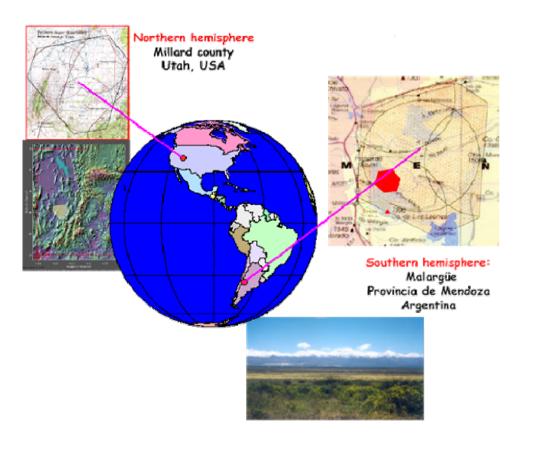

Solution: Use Cosmic Neutrinos

 Cosmic protons scatter off the cosmic microwave background to create ultrahigh energy neutrinos:

$$p + \gamma_{\text{CMB}} \rightarrow n + \pi^+ \rightarrow n + \mu^+ + \nu$$


- These neutrinos have very weak standard interactions
- Dominant interaction: $vp \rightarrow BH + X$

$$\sigma(\nu N \to \mathsf{BH}) = \sum_{i} \int_{(M_{\mathsf{BH}}^{\mathsf{min}})^{2}/s}^{1} dx \,\widehat{\sigma}_{i}(xs) \, f_{i}(x,Q)$$

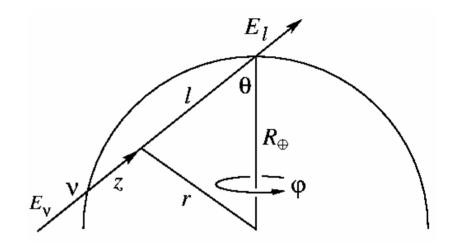


Atmospheric Showers

- vp → BH gives inclined showers starting deep in the atmosphere
- Atmosphere filters out background from protoninitiated showers
- Rate: a few per minute somewhere on Earth

Auger Observatory

- Currently no such events seen → most stringent bound on extra dims so far.
- Auger can detect ~100 black holes in 3 years.
- Insensitive to number of extra dimensions *n*.

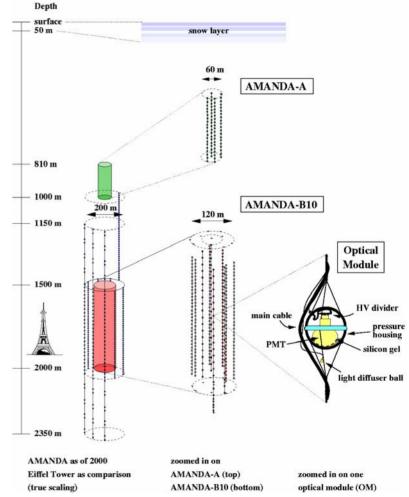


USA Today version: "Dozens of tiny 'black holes' may be forming right over our heads... A new observatory might start spotting signs of the tiny terrors, say physicists Feng and Shapere... They're harmless and pose no threat to humans."

7 December 2004

BHs vs. SM

- BH rates may be 100 times
 SM rate. But
 - large BH $\sigma \rightarrow$ large rate
 - − large flux → large rate
- However, consider Earthskimming neutrinos:
 - large flux \rightarrow large rate
 - large BH $\sigma \rightarrow$ small rate

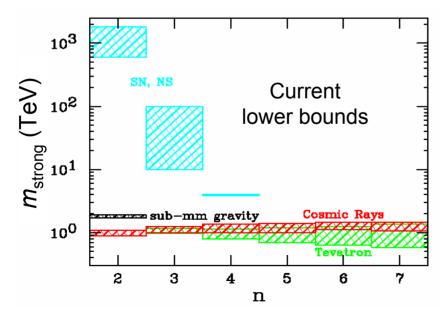

Bertou et al., Astropart. Phys. (2002) Feng, Fisher, Wilczek, Yu, PRL (2002)

• Degeneracy is resolved by ratio of rates alone.

AMANDA/IceCube

- Neutrino telescopes: promising BH detectors
- Similar rate: ~10 BH/year
- Complementary information
 - BH branching ratios (jets vs. muons)
 - Angular distributions

Kowalski, Ringwald, Tu, PLB (2002) Alvarez-Muniz, Feng, Han, Hooper, Halzen, PRD (2002)



What You Could Do With A Black Hole If You Found One

- Discover extra dimensions
- Test Hawking evaporation, BH properties
- Explore last stages of BH evaporation, quantum gravity, information loss problem

Conclusions

- Gravity is either intrinsically weak or is strong but diluted by extra dimensions
- Black hole production is a leading test

 If gravity is strong at the TeV scale, we will find microscopic black holes and extra dimensions in cosmic rays and colliders