THE DARK UNIVERSE

Jonathan Feng Department of Physics and Astronomy

UCI Distinguished Faculty Lecture 26 October 2004

What is the universe made of?

- An age old question, but we live at a particularly interesting time:
 - We know how "big" the universe is.

- We have no idea what most of it is made of.

Historical Precedent

Eratosthenes measured the size of the Earth in 200 B.C.

- Much bigger than expected
- Accurate to 10%
- Led to more questions than answers

Now again, but with Earth \rightarrow universe

First evidence from rotation of galaxies and galactic clusters in 1930's

- Expect $v_c \sim R^{-1/2}$ beyond luminous region
- Instead find $v_c \sim \text{constant}$
- Discrepancy resolved by postulating dark matter

Since 1998, these data have been supplemented by additional cosmological observations

These measurements imply:

Dark Matter: $23\% \pm 4\%$ Dark Energy Λ : $73\% \pm 4\%$

The universe is 96% dark!

- Much bigger than expected
- Accurate to 10%
- Leads to more questions than answers

COSMOLOGY MARCHES ON earth, air, stars, planets, fire, water dark matter, dark energy 33- Day IIII CL Da

Dark Matter: What is it?

Known DM properties

Stable

Cold (slow)

• Non-baryonic

Dark matter requires new kinds of particles Particle physics ↔ Cosmology

UCI Distinguished Faculty Lecture

Dark Matter Candidates

- Many different kinds of new particles are possible.
- But independent of cosmology, new particles are required to solve one of the biggest problem in particle physics: electroweak symmetry breaking.
- These particles are often WIMPs, weaklyinteracting massive particles, with masses ~ 100 GeV. Could these be dark matter?

Thermal Relic DM Particles

2) Universe cools: $N = N_{EQ} \sim e^{-m/T}$

3) χs "freeze out":*N* ~ const

• Final *N* fixed by annihilation cross section:

 $\Omega_{\rm DM} \sim 0.1 \ (\sigma_{\rm weak} / \sigma_{\rm A})$ Remarkable! 13 Gyr later, Martha Stewart sells ImClone stock – the next day, stock plummets

Coincidences? Maybe, but worth serious investigation!

New Possibilities for Dark Matter

Supersymmetry predicts a partner particle for every known particle. The partner of the photon is generally an excellent DM candidate, but different models have different implications for detection.

Focus point dark matter predicts enhanced detection rates

$\chi\chi \rightarrow$ neutrinos in the Sun

$\chi\chi \rightarrow$ positrons in the halo

AMANDA in the Antarctic Ice

AMS on the International Space Station

Extra Dimensional Dark Matter

Cheng, Feng, Matchev (2002)

• Extra spatial dimensions could be curled up into small circles.

 Particles moving in extra dimensions appear as a set of copies of normal particles.

Dark Matter Detection

CDMS in the Soudan mine ¹/₂ mile underground in Minnesota

SuperWIMP Dark Matter

Feng, Rajaraman, Takayama (2003)

- Both supersymmetry and extra dimensions predict partner particles for all known particles. What about the partners of the graviton?
- Such partners interact only through gravity, that is, extremely weakly.
- Can they have the right relic density?

SuperWIMP Dark Matter

 Early universe behaves as usual, WIMPs freeze out with desired thermal relic density

A year passes...then WIMPs decay to graviton partners

Graviton partners inherit the right density, but escape most searches – they are superweakly-interacting "superWIMPs"

Dark Matter at Colliders

Large Hadron Collider at CERN, Geneva

If dark matter is WIMPs or superWIMPs, we will know soon after the LHC turns on in 2007

Acknowledgments

Physics and Astronomy Department staff

Szu Wang

UCI Distinguished Faculty Lecture