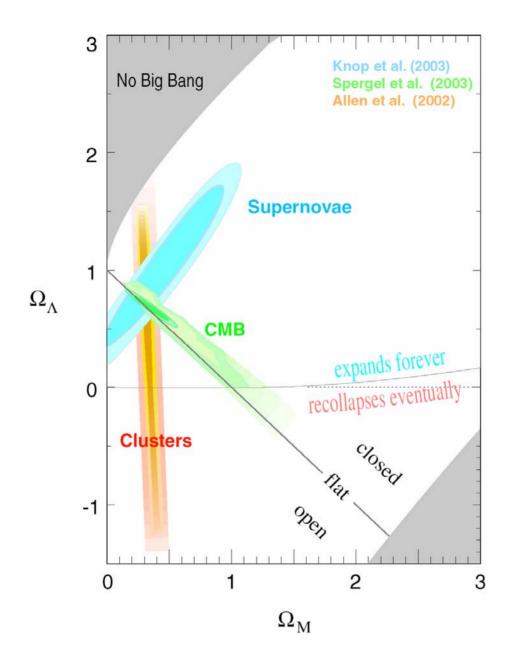
The Linear Collider and the Rest of the Universe

Jonathan Feng University of California, Irvine

ALCPG Victoria Meeting 28 July 2004

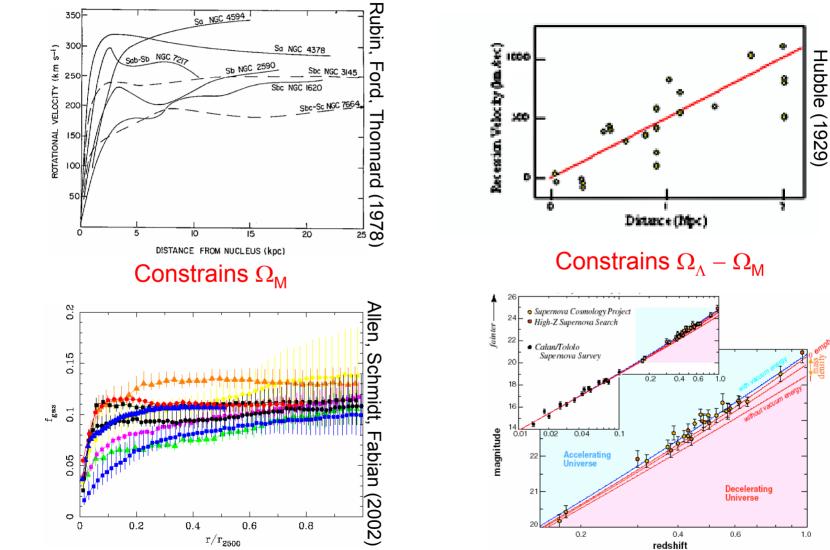
I. RECENT PROGRESS

II. OPEN PROBLEMS

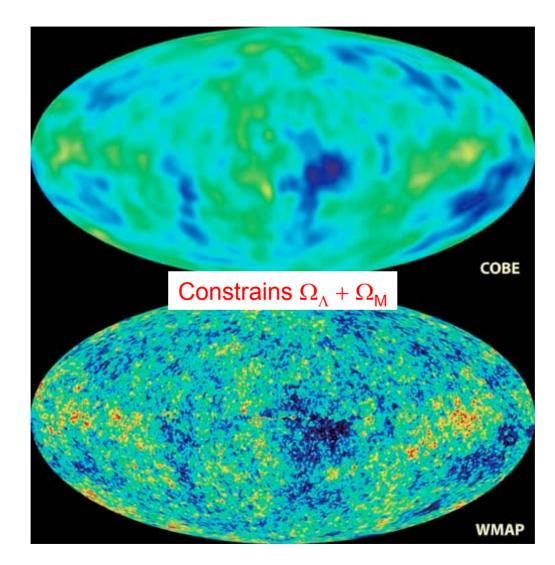

III. OPPORTUNITIES FOR THE LINEAR COLLIDER

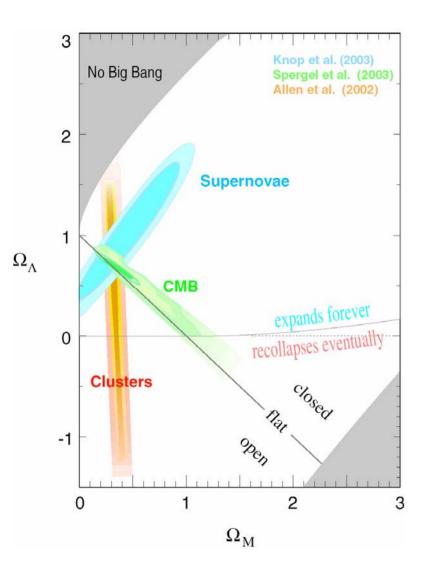
RECENT PROGRESS

What is the Universe made of?


Recently there have been remarkable advances in our understanding of the Universe on the largest scales

We live at a privileged time: we now have a complete census of the Universe


"Clusters"


Now

Cosmic Microwave Background

Then

Now

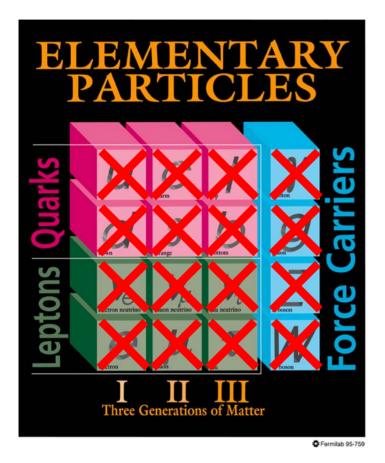
- These three agree:
 - Dark Matter: $23 \pm 4\%$ Dark Energy: $73 \pm 4\%$ Baryons: $4 \pm 0.4\%$ [Neutrinos: 0.5%]
- Two must be wrong to change this conclusion
- Stunning progress (cf.1998)

A less charitable view

COSMOLOGY MARCHES ON

OPEN PROBLEMS

What are dark matter and dark energy? These problems appear to be completely different


DARK MATTER

- No known particles contribute
- Probably tied to
 M_{weak} ~ 100 GeV
- Several compelling solutions

DARK ENERGY

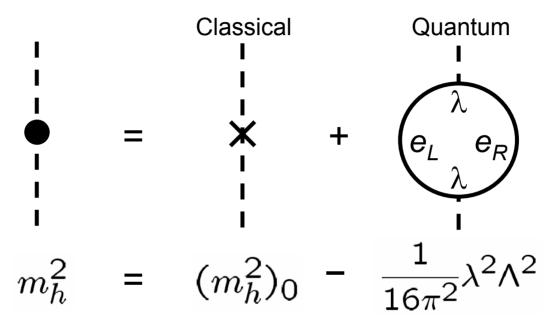
- All known particles contribute
- Probably tied to $M_{\rm Planck} \sim 10^{19} \, {\rm GeV}$
- No compelling solutions

Dark Matter

Known DM properties

Stable

Cold

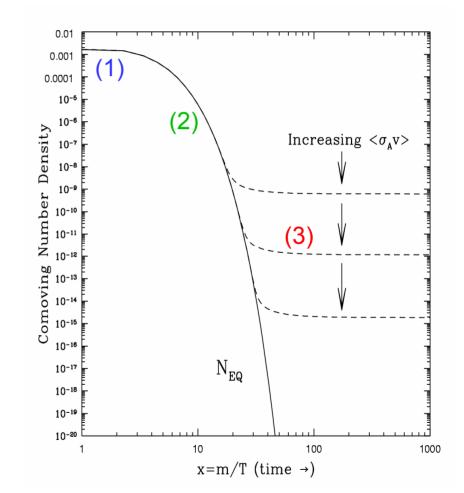

• Non-baryonic

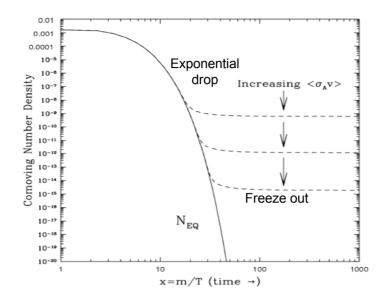
DM: precise, unambiguous evidence for new physics

Dark Matter Candidates

- The Wild, Wild West of particle physics: axions, warm gravitinos, neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, superWIMPs, self-interacting particles, selfannihilating particles, branons...
- Masses and interaction strengths span many orders of magnitude
- But independent of cosmology, we expect new particles:
 electroweak symmetry breaking

The Problem with Electroweak Symmetry Breaking

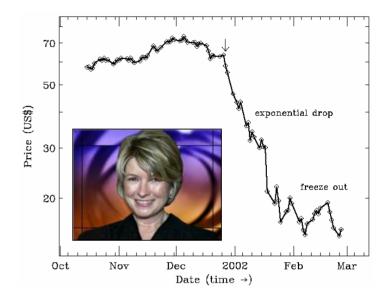

 $m_h \sim 100 \text{ GeV}, \Lambda \sim 10^{19} \text{ GeV} \rightarrow \text{cancellation to}$ 1 part in 10^{34}


We expect new physics (supersymmetry, extra dimensions, something!) at *M*_{weak}

ALCPG Victoria Meeting

Thermal Relic DM Particles

- (1) Initially, DM is in thermal equilibrium: $\chi\chi \leftrightarrow \overline{f}f$
- (2) Universe cools: $N = N_{EQ} \sim e^{-m/T}$
- (3) χs "freeze out": *N* ~ const



• Final *N* fixed by annihilation cross section:

 $\Omega_{\text{DM}} \sim 0.1 \; (\sigma_{\text{weak}} / \sigma_{\text{A}})$

Just right if $\sigma_A \sim \sigma_{weak}$: remarkable!

 Domestic diva Martha Stewart sells ImClone stock – the next day, stock plummets

Coincidences? Maybe, but worth serious investigation!

Dark Energy

- Minimal case: vacuum energy
- $p = w \rho$ Energy density $\rho \sim R^{-3(1+w)}$
 - Matter: $\rho_{M} \sim R^{-3}$ w = 0Radiation: $\rho_{R} \sim R^{-4}$ $w = \frac{1}{3}$ Vacuum energy: $\rho_{\Lambda} \sim \text{constant}$ w = -1

•
$$\Omega_{\Lambda} \approx 0.7 \rightarrow \rho_{\Lambda} \sim (\text{meV})^4$$

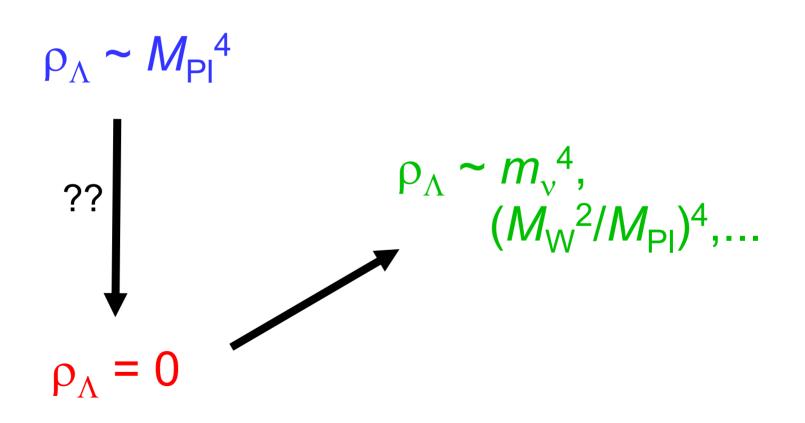
All Fields Contribute to Λ

• Quantum mechanics:

 $\frac{1}{2}\hbar\omega, \qquad \omega^2 = k^2 + m^2$

• Quantum field theory:

$$\int^{E} d^{3}k \, (\frac{1}{2} \hbar \omega) \sim E^{4},$$


where E is the energy scale where the theory breaks down

• We expect

 $(M_{\text{Planck}})^4 \sim 10^{120} \rho_{\Lambda}$ $(M_{\text{GUT}})^4 \sim 10^{108} \rho_{\Lambda}$ $(M_{\rm SUSY})^4 \sim 10^{90} \rho_{\Lambda} \ (M_{\rm weak})^4 \sim 10^{60} \rho_{\Lambda}$

One Approach

Small numbers ↔ broken symmetry

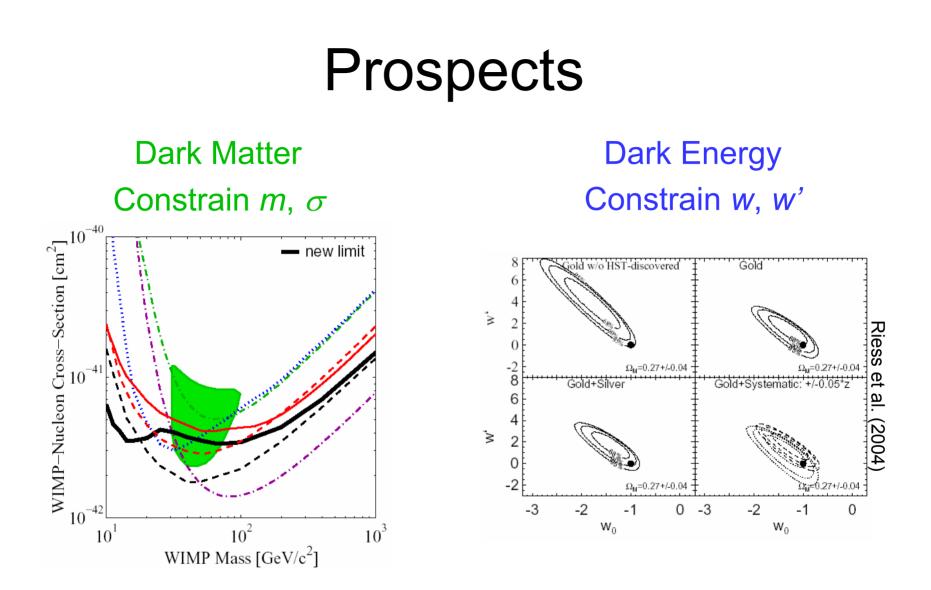
Another Approach

Many, densely spaced

many universes, etc.)

vacua (string landscape,

Anthropic principle: $-1 < \Omega_{\Lambda} < 100$


 $\rho_{\Lambda} \sim M_{\rm Pl}^4$

Weinberg (1989)

28 July 2004

ALCPG Victoria Meeting

- Two very different approaches
- There are others, but none is especially compelling
- Dark energy: the black body radiation problem of the 21st century?
- Ways forward:
 - Discover a fundamental scalar particle (Higgs would be nice)
 - $(M_{\rm weak})^4 \sim 10^{60} \rho_\Lambda$: map out the EW potential
 - $(M_{SUSY})^4 \sim 10^{90} \rho_{\Lambda}$: understand SUSY breaking
 - $(M_{GUT})^4 \sim 10^{108} \rho_{\Lambda}$: extrapolate to GUT scale
 - $(M_{\text{Planck}})^4 \sim 10^{120} \rho_{\Lambda}$: ...

Many other cosmological and astrophysical probes, but they are unlikely to lead to fundamental understandings of dark matter and dark energy

ALCPG Victoria Meeting

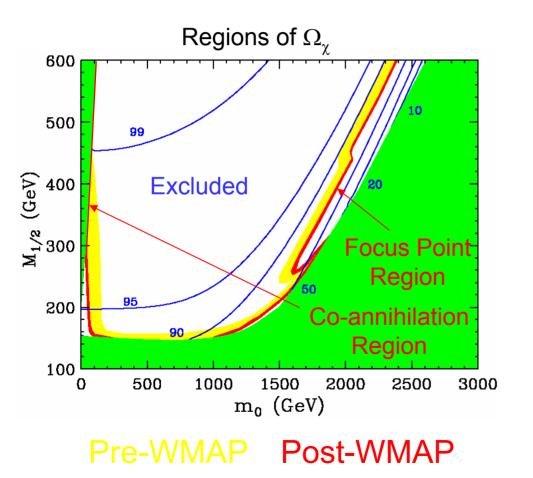
OPPORTUNITIES FOR THE LINEAR COLLIDER

- Detailed and exhaustive exploration of the weak scale is required to determine its contributions to dark matter
- This is true on general grounds:
 - EWSB → new particles at ~ TeV
 - Constraints \rightarrow conservation laws \rightarrow new stable particle
 - Relic density "coincidence" \rightarrow new stable particle with significant $\Omega_{\rm DM}$

Peskin (2004)

Examples

- Supersymmetry
 - Superpartners
 - R-parity
 - Neutralino χ with significant Ω_{DM}
- Universal Extra Dimensions
 - Kaluza-Klein partners
 - KK-parity
 - Lightest KK particle with significant $\Omega_{\rm DM}$
- Branes
 - Brane fluctuations
 - Brane-parity
 - Branons with significant $\Omega_{\rm DM}$

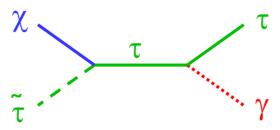

Goldberg (1983)

Appelquist, Cheng, Dobrescu (2000)

Servant, Tait (2002)

Cembranos, Dobado, Maroto (2003)

Supersymmetry


Cosmology excludes much of parameter space (Ω_{χ} too big)

Cosmology focuses attention on particular regions (Ω_{χ} just right)

28 July 2004

Co-annihilation Region

• If other superpartners are nearly degenerate with the χ LSP, they can help it annihilate

Griest, Seckel (1986)

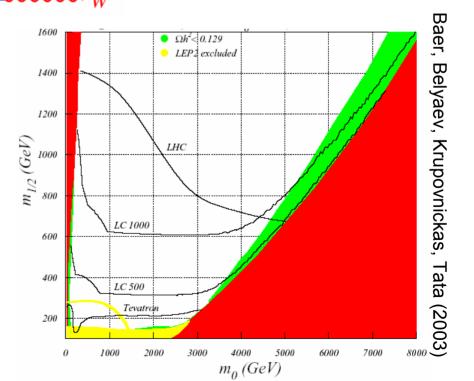
• Requires similar $e^{-m/T}$ for χ and $\tilde{\tau}$, so (roughly) $\Delta m < T \sim m_{\chi}/25$

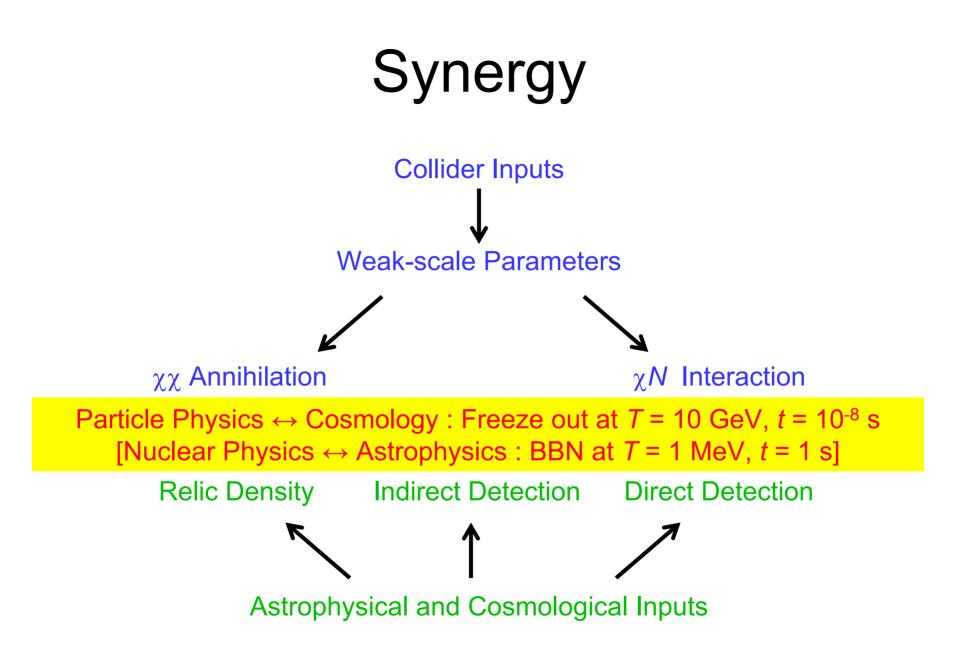
• Motivates theoretical studies of co-annihilation effects, and experimental studies of $\tilde{\tau} \rightarrow \tau \chi$ with $\Delta m \sim \text{few GeV}$

Gondolo, Edsjo, Ullio, Bergstrom, Schelke, Baltz (2002) Ellis, Olive, Santoso, Spanos (2003) Baer, Belyaev, Kruovnickas, Tata (2003) Belanger, Boudjema, Cottrant, Pukhov, Semenov (2004) Nauenberg et al. Dutta, Kamon Battaglia et al.

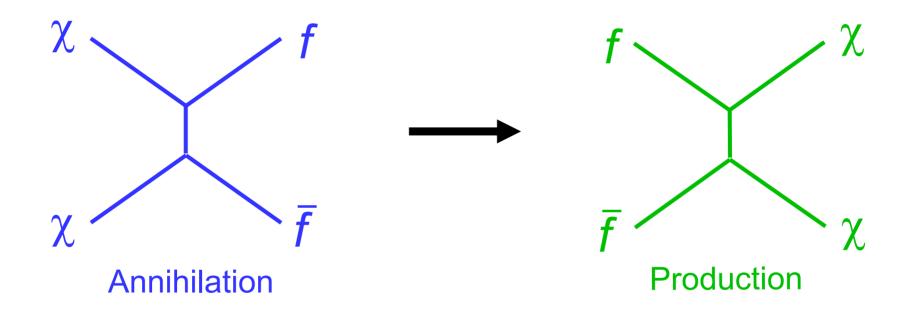
. . .

Focus Point Region


 χ_i^+


• Relic density can also be reduced if χ has significant Higgsino component to enhance Feng, Matchev, Wilczek (2000)

χ

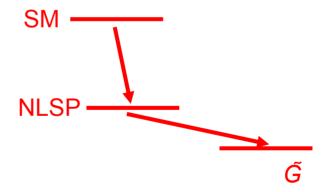

 Motivates SUSY with multi-TeV *g̃*, *q̃*, *l̃* χ[±]/χ⁰ highly degenerate

 Such SUSY would be missed at LHC, discovered at LC

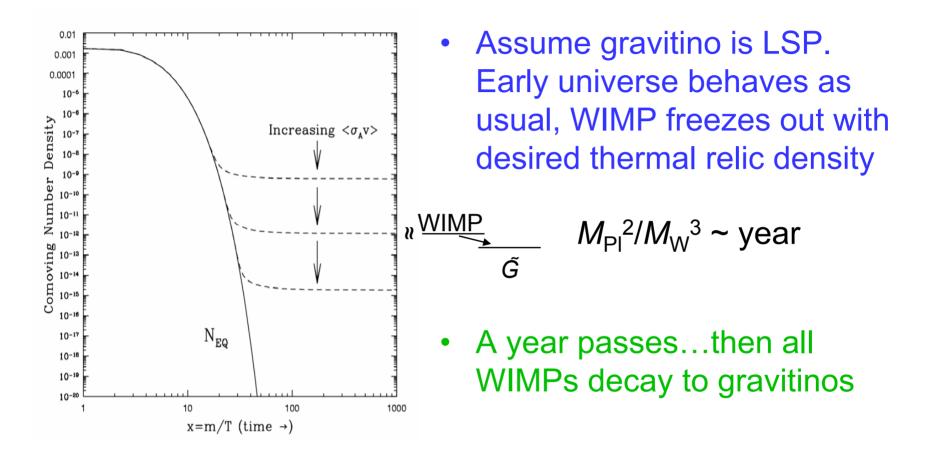
DM at Colliders: No-Lose Theorem

Correct relic density \rightarrow efficient annihilation then \rightarrow Efficient production now

No-Lose Theorem: Loophole

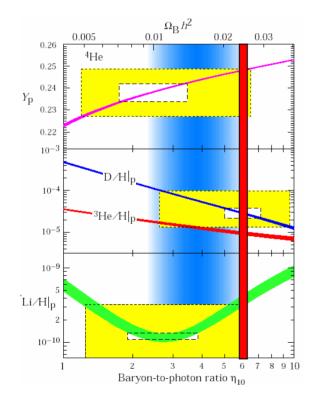

• SUSY predicts gravitinos: mass ~ $M_{\rm W}$, couplings ~ $M_{\rm W}/M_{\rm Pl}$

SM ______ G


Ĝ not LSP

Assumption of most of literature

 Completely different cosmology and phenomenology


Gravitinos become dark matter, naturally inherit the right density, but are seemingly impossible to produce at colliders

SuperWIMPs

- Gravitinos are superweakly-interacting massive particles – "superWIMPs"
- all interactions are suppressed by $M_{\rm W}/M_{\rm Pl} \sim 10^{-16}$
- Are there *any* observable consequences?

Big Bang Nucleosynthesis

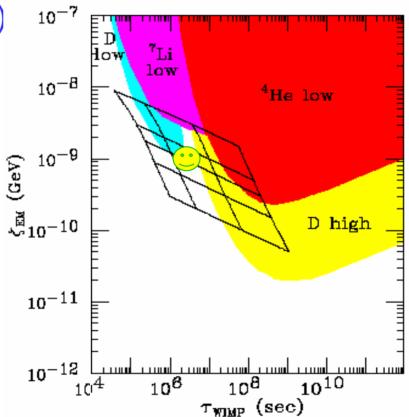
Late decays, $\tilde{\tau} \rightarrow \tau \tilde{G}$,...modify light element abundances

Fields, Sarkar, PDG (2002)

After WMAP

- $\eta_D = \eta_{CMB}$
- Independent ⁷Li measurements are all low by factor of 3:

 ${}^{7}\text{Li/H} = 1.5^{+0.9}_{-0.5} \times 10^{-10} \quad (95\% \text{ CL}) \ [27]$ ${}^{7}\text{Li/H} = 1.72^{+0.28}_{-0.22} \times 10^{-10} \ (1\sigma + \text{sys}) \ [28]$ ${}^{7}\text{Li/H} = 1.23^{+0.68}_{-0.32} \times 10^{-10} \ (\text{stat} + \text{sys}, 95\% \text{ CL}) \ [29]$


• ⁷Li is now a serious problem

Jedamzik (2004)

Effects on **BBN**

- Consider τ̃ → G̃ τ (others similar)
 Its impact depends on
 - Decay time τ
 - Energy release ζ_{EM}
- Grid: Predictions for $m_{\tilde{G}} = 100 \text{ GeV} - 3 \text{ TeV} \text{ (top to bottom)}$ $\Delta m = 600 \text{ GeV} - 100 \text{ GeV} \text{ (left to right)}$

 SuperWIMP DM naturally explains ⁷Li !

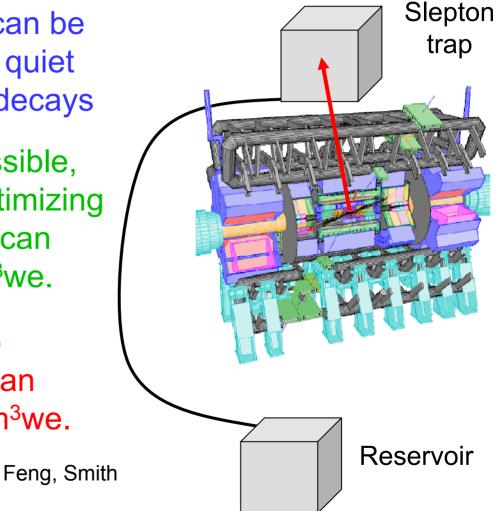
Feng, Rajaraman, Takayama (2003)

Collider Phenomenology

Drees, Tata (1990) Goity, Kossler, Sher (1993) Feng, Moroi (1996) Hoffman, Stuart et al. (1997) Acosta (2002)

Buchmuller, Hamaguchi, Ratz, Yanagida (2004) Feng, Su, Takayama (2004) Ellis, Olive, Santoso, Spanos (2004)

• Each SUSY event produces 2 metastable sleptons Spectacular signature: highly-ionizing charged tracks


Current bound (LEP): $m_{\gamma} > 99 \text{ GeV}$

Tevatron Run II reach: $m_{\gamma} \sim 150 \text{ GeV}$

LHC reach: $m_{\tilde{1}} \sim 700$ GeV in 1 year

Slepton Trapping

- Sleptons live a year, so can be trapped then moved to a quiet environment to observe decays
- LHC: 10⁶ sleptons/yr possible, but most are fast. By optimizing trap location and shape, can catch ~100/yr in 1000 m³we.
- LC: tune beam energy to produce slow sleptons, can catch ~1000/yr in 1000 m³we.

Measuring $m_{\tilde{G}}$ and M_*

• Decay width to \tilde{G} :

$$\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4$$

- Measurement of $\Gamma \rightarrow m_{\tilde{G}}$
 - → $\Omega_{\tilde{G}}$. SuperWIMP contribution to dark matter
 - \rightarrow F. Supersymmetry breaking scale, dark energy
 - \rightarrow Early universe (BBN, CMB) in the lab
- Measurement of Γ and $E_I \rightarrow m_{\tilde{G}}$ and M_*
 - \rightarrow Precise test of supergravity: gravitino is graviton partner
 - → Measurement of G_{Newton} on fundamental particle scale
 - \rightarrow Probes gravitational interaction in particle experiment

CONCLUSIONS

IMPRESSIVE RECENT PROGRESS

FUNDAMENTAL OPEN PROBLEMS

EXTRAORDINARY OPPORTUNITIES FOR THE LINEAR COLLIDER