SuperWIMP Dark Matter

Jonathan Feng UC Irvine

FNAL Theoretical Astrophysics Seminar 17 May 2004

Dark Matter

- Tremendous recent progress
- $\Omega_{\rm M} = 0.27 \pm 0.04$ $\Omega_{\Lambda} = 0.73 \pm 0.04$ $[\Omega_{\rm B} = 0.044 \pm 0.004]$
- 3 measurements agree;
 2 must be wrong to change these conclusions
- On the other hand...

COSMOLOGY MARCHES ON

- We live in interesting times: we know how much there is, but we have no idea what it is
- Precise, unambiguous evidence for new particle physics

Dark Matter Candidates

- The Wild, Wild West of particle physics: axions, warm gravitinos, neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, self-interacting particles, self-annihilating particles, fuzzy dark matter, superWIMPs...
- Masses and interaction cross sections span many orders of magnitude
- Consider neutralinos: a favorite because they have at least three virtues...

I. Well-motivated Stable Particle

Goldberg (1983) Ellis et al. (1983)

- Required by supersymmetry, and so motivated by
 - electroweak symmetry breaking
 - force unification
 - heavy top quark

. . .

Stable

- χ is typically the lightest supersymmetric particle (LSP), and so stable (in R-parity conserving supergravity)

II. Natural Relic Density

1) Initially, neutralinos χ are in thermal equilibrium: $\chi\chi \leftrightarrow \overline{f}f$ 2) Universe cools: $N = N_{EQ} \sim e^{-m/T}$ 3) χ s "freeze out": $N \sim \text{constant}$

Freeze out determined by annihilation cross section: for neutralinos, $\Omega_{DM} \sim 0.1$; natural – no new scales!

III. Detection Promising

Correct relic density → efficient annihilation then
 → efficient annihilation now, efficient scattering now
 No-Lose Theorem

Illustration: mSUGRA

- Natural relic density: $\Omega_{\chi} = 0.23 \pm 0.04$ in red region

 Detection promising: below contours

Observable	Type	Sensitivity	Experiment(s)
$\tilde{\chi}^{\pm}\tilde{\chi}^{0}$	Collider	See Ref. [5]	Tevatron: CDF, D0
$B \rightarrow X_s \gamma$	Low energy	$ \Delta B(B \rightarrow X_s \gamma) < 1.2 \times 10^{-4}$	BaBar, BELLE
Muon MDM	Low energy	$ a_{\mu}^{\rm SUSY} < 8 \times 10^{-10}$	Brookhaven E821
$\sigma_{ m proton}$	Direct DM	$\sim 10^{-8}$ pb (See Ref. [5])	CDMS, CRESST, GENIUS
ν from Earth	Indirect DM	$\Phi^{\oplus}_{\mu} < 100 \text{ km}^{-2} \text{ yr}^{-1}$	Amanda, Nestor, Antares
ν from Sun	Indirect DM	$\Phi^{\odot}_{\mu} < 100 \text{ km}^{-2} \text{ yr}^{-1}$	Amanda, Nestor, Antares
γ (gal. center)	Indirect DM	$\Phi_{\gamma}(1) < 1.5 \times 10^{-10} \text{ cm}^{-2} \text{ s}^{-1}$	GLAST
γ (gal. center)	Indirect DM	$\Phi_{\gamma}(50) < 7 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$	MAGIC
e^+ cosmic rays	Indirect DM	$(S/B)_{\rm max} < 0.01$	AMS-02

SuperWIMPs: The Basic Idea

Feng, Rajaraman, Takayama, hep-ph/0302215, hep-ph/0306024, hep-ph/0307375 Feng, Su, Takayama, hep-ph/0404198, hep-ph/0404231

• Supergravity requires gravitinos:

mass ~ $M_{\rm W}$, couplings ~ $M_{\rm W}/M_{\star}$

Ĝ LSP

• *Ĝ* not LSP

• No impact – assumption of most of literature

 Qualitatively different cosmology

Gravitinos are dark matter now. They are superWIMPs – superweakly-interacting massive particles

SuperWIMP Virtues

I. Well-motivated stable particle?

Yes – SuperWIMPs exist in same frameworks as WIMPs Supersymmetry $\chi \rightarrow \tilde{G}$ Universal extra dimensions $B^1 \rightarrow G^1$

Appelquist, Cheng, Dobrescu (2001)

II. Natural relic density?

Yes – Inherited from WIMP freeze out, no new scales

 III. Detection Promising?
 No – Impossible to detect by conventional DM searches (No-Lose Theorem loophole)
 Yes – Qualitatively new signals

History

• Gravitinos are the original SUSY dark matter

Pagels, Primack (1982) Weinberg (1982) Krauss (1983) Nanopoulos, Olive, Srednicki (1983)

Old ideas:

Gravitinos have thermal relic density

$$\Omega_{\tilde{G}} < 1 \Rightarrow m_{\tilde{G}} < 1 \text{ keV}$$

• DM if bound saturated, requires new scale

Khlopov, Linde (1984) Moroi, Murayama, Yamaguchi (1993) Bolz, Buchmuller, Plumacher (1998)

 Weak scale gravitinos diluted by inflation, regenerated in reheating

 $T_{\rm RH} < 10^{10} \; {\rm GeV}$

• DM if bound saturated, requires new scale

17 May 2004

SuperWIMP Signals

- SuperWIMP couplings are suppressed by M_W/M_{*}, no signals in direct or indirect DM searches
- But this same suppression means that the decays $\tilde{\tau} \to \tilde{G} \tau$, $\tilde{B} \to \tilde{G} \gamma$

are very late with possibly observable consequences

- Signals depend on
 - The NLSP
 - Two free parameters: $m_{\tilde{G}}$, $\Delta m = m_{\text{NLSP}} m_{\tilde{G}}$

Decays to SuperWIMPs

• Lifetime

$$\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4$$
$$\Gamma(\tilde{B} \to \gamma \tilde{G}) = \frac{\cos^2 \theta_W}{48\pi M_*^2} \frac{m_{\tilde{B}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{B}}^2} \right]^3 \left[1 + 3\frac{m_{\tilde{G}}^2}{m_{\tilde{B}}^2} \right]^4$$

In the limit $\Delta m \ll m_{\tilde{G}}$,

$$\tau(\tilde{\ell} \to \ell \tilde{G}) \approx 3.6 \times 10^8 \text{ s} \left[\frac{100 \text{ GeV}}{\Delta m}\right]^4 \frac{m_{\tilde{G}}}{1 \text{ TeV}}$$
$$\tau(\tilde{B} \to \gamma \tilde{G}) \approx 2.3 \times 10^7 \text{ s} \left[\frac{100 \text{ GeV}}{\Delta m}\right]^3$$

• Energy release

$$\zeta_i = \varepsilon_i B_i Y_{\text{NLSP}}$$

 ϵ_i = energy released in each decay

$$Y_{\rm NLSP} = n_{\rm NLSP} / n_{\gamma}^{\rm BG}$$

 $\Omega_{\tilde{G}} = \Omega_{\rm DM} \rightarrow (m_{\tilde{G}}, \Delta m) \leftrightarrow (\tau, \zeta_{\rm i})$

Big Bang Nucleosynthesis

• Late decays occur after BBN and before CMB. This has consequences for light element abundances.

Fields, Sarkar, PDG (2002)

Cyburt, Fields, Olive (2003)

BBN EM Constraints

- NLSP = WIMP → Energy release is dominantly EM
- EM energy quickly thermalized, so BBN constrains (τ, ζ_{EM})
- BBN constraints weak for early decays: hard γ, e⁻ thermalized in hot universe
- Best fit reduces ⁷Li: 🙂

Cyburt, Ellis, Fields, Olive (2002)

BBN EM Predictions

- Consider $\tilde{\tau} \to \tilde{G} \tau$ (others similar)
- Grid: Predictions for $m_{\tilde{G}} = 100 \text{ GeV} - 3 \text{ TeV} \text{ (top to bottom)}$ $\Delta m = 600 \text{ GeV} - 100 \text{ GeV} \text{ (left to right)}$
- Some parameter space excluded, but much survives
- In fact, superWIMP DM naturally explains ⁷Li !

Feng, Rajaraman, Takayama (2003)

⁷Li Anomaly

- Given $\eta_D = \eta_{CMB}$, ⁷Li is underabundant by factor of 3-4.
- Observations:

 ${}^{7}\text{Li/H} = 1.5^{+0.9}_{-0.5} \times 10^{-10} \quad (95\% \text{ CL}) [27]$ ${}^{7}\text{Li/H} = 1.72^{+0.28}_{-0.22} \times 10^{-10} \ (1\sigma + \text{sys}) [28]$ ${}^{7}\text{Li/H} = 1.23^{+0.68}_{-0.32} \times 10^{-10} \ (\text{stat} + \text{sys}, 95\% \text{ CL}) [29]$

- Possible explanations:
 - Destruction in stellar cores (but no scatter?)
 - Nuclear systematics (not likely)

Cyburt, Fields, Olive (2003)

New physics

BBN Hadronic Constraints

BBN constraints on *hadronic* energy release are severe for early decay times

Kawasaki, Kohri, Moroi (2004)

• Cannot neglect subleading hadronic decays:

$$\tilde{l} \rightarrow l Z \tilde{G} , \nu W \tilde{G}
\tilde{\nu} \rightarrow \nu Z \tilde{G} , l W \tilde{G}$$

• In fact, for neutralinos, these aren't even subleading:

$$\chi \to Z \tilde{G}, h \tilde{G}$$

This effectively eliminates \tilde{B} NLSP (photino still ok)

BBN Hadronic Predictions

Feng, Takayama, Su (2004)

Strong constraints on early decays

FNAL

Entropy Production

Feng, Rajaraman, Takayama (2003)

Cosmic Microwave Background

- Late decays may also distort the CMB spectrum
- For 10⁵ s < τ < 10⁷ s, get "μ distortions":

$$\overline{e^{E/(kT)+\mu}-1}$$

μ=0: Planckian spectrum μ≠0: Bose-Einstein spectrum Hu, Silk (1993)

Current bound: |μ| < 9 x 10⁻⁵
 Future (DIMES): |μ| ~ 2 x 10⁻⁶

SuperWIMPs in Extra Dimensions

 Universal Extra Dimensions: all fields propagate in TeV⁻¹ size extra dimensions

Appelquist, Cheng, Dobrescu (2000)

- SUSY → UED: Superpartners → KK partners R-parity → KK-parity LSP → LKP B dark matter → B¹ dark matter
- B¹ thermal relic density

Servant, Tait (2002)

• B¹ direct and indirect detection

Cheng, Feng, Matchev (2002) Hooper, Kribs (2002) Servant, Tait (2002) Majumdar (2002) Bertone, Servant, Sigl (2002)

SuperWIMPs in Extra Dimensions

- SuperWIMP: $\tilde{G} \rightarrow G^1$
- O(1) modifications, except: tower of KK gravitons → reheating is *extremely* efficient

(Cf. SUSY $T_{\rm RH} < 10^{10} \text{ GeV}$)

SuperWIMP scenario requires $T_{RH} > 40 \text{ GeV}$

Feng, Rajaraman, Takayama (2003)

Implications for Particle Physics

 We've been missing half of parameter space.
 For example, mSUGRA should have 6 parameters: { m₀, M_{1/2}, A₀, tanβ, sgn(μ), m_{3/2} }

 \tilde{G} not LSP $\Omega_{LSP} > 0.23$ excluded $\tilde{\tau}$ LSP excluded $ilde{G}$ LSP Ω_{NLSP} > 0.23 ok $ilde{ au}$ LSP ok

Implications for SUSY Spectrum

What are the allowed superpartner masses in the superWIMP scenario?
 It depends...constraints bound n_{G̃} = Ω_{G̃} / m_{G̃}

• If
$$\Omega_{\tilde{G}} = \Omega_{\text{DM}}$$
, $n_{\tilde{G}} \sim m_{\tilde{G}}^{-1}$, low masses excluded

• If $\Omega_{\tilde{G}} = (m_{\tilde{G}} / m_{NLSP}) \Omega_{NLSP}^{th}$, $n_{\tilde{G}} \sim m_{\tilde{G}}$, high masses excluded

 $\Omega_{\tilde{G}} = \Omega_{\mathsf{DM}}$

Shaded regions excluded

 $\Omega_{\tilde{G}} = (m_{\tilde{G}} / m_{NLSP}) \Omega_{NLSP}^{th}$

Shaded regions excluded

17 May 2004

Implications for Colliders

Feng, Su, Takayama (2004)

- Each SUSY event produces 2 metastable sleptons Signature: highly-ionizing charged tracks
- Current bound (LEP): $m_{\tilde{1}} > 99 \text{ GeV}$
- Tevatron Run II reach: ~ 150 GeV

Feng, Moroi (1996) Hoffman, Stuart et al. (1997)

• LHC reach: ~ 700 GeV in 1 year

Acosta (2002)

Implications for Colliders

- May even be able to trap sleptons, move to a quiet environment to observe decays
- At LHC, ~10⁶ sleptons possible, can catch ~100 in 100 m³we
- At LC, can tune beam energy to produce slow sleptons

Implications for Colliders

• Recall:

$$\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4$$

- Measurement of $\Gamma \rightarrow m_{\tilde{G}}$
 - → $\Omega_{\tilde{G}}$. SuperWIMP contribution to dark matter
 - \rightarrow F. Supersymmetry breaking scale, vacuum energy
 - → BBN in the lab
- Measurement of Γ and $E_{I} \rightarrow m_{\tilde{G}}$ and Planck mass M_{*}
 - \rightarrow Precise test of supergravity: gravitino is graviton partner
 - → Measurement of G_{Newton} on fundamental particle scale
 - \rightarrow Probes gravitational interaction in particle experiment

Related Recent Work

- Analysis in particular models
 - mSUGRA (Ellis, Olive, Santoso, Spanos, hepph/0312062)
- Astrophysics
 - Structure formation (Sigurdson, Kamionkowski, astroph/0311486)
- Collider physics
 - Gravitino studies (Buchmuller, Hamaguchi, Ratz, Yanagida, hep-ph/0402179, hep-ph/0403203)

Summary

SuperWIMPs – a new class of particle dark matter

	WIMPs	superWIMPs
Well-motivated stable particle?	Yes	Yes
Natural relic density?	Yes	Yes
Detection promising?	Yes	Yes (already seen?)
Years studied	20	1