Dark Matter Detection in Space

Jonathan Feng UC Irvine

SpacePart 03, Washington, DC 10 December 2003

Dark Matter

- We live in interesting times:
 - We know there is dark matter, and how much
 - We have no idea what it is
- This talk: Recent developments with a focus on implications for space-based experiments
- The Wild, Wild West of particle physics:
 - Neutralinos, axions, Kaluza-Klein DM, Q balls, wimpzillas, superWIMPs, self-interacting DM, warm and fuzzy DM,...

A Selection Rule: DM and the Weak Scale

• Universe cools, leaves a residue of dark matter with $\Omega_{DM} \sim 0.1 (\sigma_{Weak}/\sigma)$ – remarkable!

 13 Gyr later, Martha Stewart sells ImClone stock – the next day, stock plummets

Coincidence? Maybe, but worth investigating!

SpacePart 03

Neutralino Dark Matter

Goldberg (1983) Ellis et al. (1983)

- Predicted by supersymmetry, motivated by particle physics considerations
- One of many new supersymmetric particles

SUSY Particles

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Nlauto				Ĝ
		Neutralinos: $\{\chi \equiv \chi_1, \chi_2, \chi_3, \chi_4\}$			$\langle 4 \rangle$	gravitino
1	В	W ^o	1			
1/2	Ĩ	Ŵ٥	$ ilde{H}_u$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H _u	H _d	ĩ	
					sneutrino	

Neutralino Properties

Mass: ~ 100 GeV Interactions: weak (neutrino-like)

The "typical" WIMP (but note: neutralinos are Majorana fermions – they are their own anti-particle)

- Direct detection: see Matchev's talk
- Indirect detection: χχ annihilation

 in the halo to e⁺'s: AMS-02, PAMELA...
 in the center of the galaxy to γ's: GLAST, AMS/γ, telescopes,...
 in the center of the Sun to v's: AMANDA, NESTOR, ANTARES,...

Positrons

Turner, Wilczek (1990) Kamionkowski, Turner (1991)

- The signal: hard positrons
- Best hope: $\chi\chi \rightarrow e^+e^-$
- Problem: χ are Majorana-like, so Pauli $\rightarrow J_{init} = 0$

This process is highly suppressed

- Next best hope: $\chi\chi \rightarrow W^+W^-$, $ZZ \rightarrow e^+...$
- Problem: conventional wisdom → in simple models, χ ≈ Bino, does not couple to SU(2) gauge bosons

We are left with soft e^+ : $\chi\chi \rightarrow \overline{b}b \rightarrow \overline{c}e^+\nu...$

Photons

Urban et al. (1992) Berezinsky, Gurevich, Zybin (1992)

- $\chi \approx$ Bino also suppresses the photon signal
- Best hope: $\chi\chi \rightarrow \gamma\gamma$ highly suppressed
- Next best hope: χχ → W⁺W⁻, ZZ → γ... also suppressed

[Both e⁺ and γ signals are sensitive to cuspiness, clumpiness in the halo.]

Example: Minimal Supergravity

 A simple model Relic density regions and Bino-ness (%) incorporating unification 600 500 99 • $\chi \approx$ Bino in the (Jeov) (Gev) $0.1 < \Omega_{DM} < 0.3$ region °,200 200 But not always! (a) $tan\beta = 10$ 100 χ = Bino-Higgsino mixture in 0 500 1000 1500 2000 m_0 (GeV) "focus point region" Feng, Matchev, Wilczek (2000)

SUSY WIMP Detection

Synergy: Particle probes Dark matter detection

Recent data:

- *m_h* > 115 GeV
- $B(b \rightarrow s\gamma) \sim SM$
- (g-2)_μ ~ SM (maybe)
 - $\Omega_{\rm DM}$ low (red region)

Conclusion: indirect detection favored (valid beyond mSUGRA)

Extra Dimensional Dark Matter

• Extra dimensions generically predict Kaluza-Klein particles with mass *n/R*. What are they good for?

- If R ~ TeV⁻¹, the lightest KK particle may be a WIMP
- Consider *B*¹, the first partner of the hypercharge gauge boson

Positrons

• Recall in SUSY:

 $\chi\chi \rightarrow e^+e^$ suppressed by angular momentum

$$\frac{d\Phi_{e^+}}{d\Omega dE} = \frac{\rho^2}{m_{B^1}^2} \sum_i \langle \sigma_i v \rangle B_{e^+}^i \int dE_0 f_i(E_0) G(E_0, E)$$

 $\langle \sigma_i v \rangle$ = the annihilation σ to channel *i* $B_{e^+}^i = e^+$ branching fraction in channel *i* $f_i(E_0)$ = injection spectrum $G = e^+$ propagator in the galaxy

Moskalenko, Strong (1999)

 B¹B¹ → e⁺e⁻ is large, ~20% of all annihilations

But B¹ has spin 1

• Here $f_i(E_0) \sim \delta(E_0 - m_{B^1})$. Is the peak is erased by propagation?

Positrons from KK Dark Matter

Cheng, Feng, Matchev (2002)

Precision data → dark matter discovery and mass measurement

SpacePart 03

SuperWIMP Dark Matter

- Both SUSY and extra dimensions predict partner particles for all known particles. What about the gravitino \tilde{G} or the 1st graviton excitation G^1 ?
- G
 And G¹ interact only gravitationally, but that's sufficient for dark matter

Gravitinos from Late Decay

- Assume gravitinos are diluted by inflation, and the universe reheats to low temperature.
- \tilde{G} not LSP \tilde{G} LSP

- No impact implicit assumption of most of literature
- Qualitatively new cosmology

Gravitinos from Late Decay

Gravitinos naturally inherit WIMP density, but are superweakly-interacting – "superWIMPs"

SpacePart 03

SuperWIMP Detection

- SuperWIMPs evade all conventional dark matter searches
- The only possible signal: WIMP → superWIMP decays in the early universe
- Decay time is sensitive to

 $\Delta m = m_{\text{WIMP}} - m_{\text{sWIMP}}$

Gravitino Cosmology: Detection

• For $\Delta m \sim O(100 \text{ GeV})$, WIMP \rightarrow superWIMP decays occur before CMB and after BBN. This can be tested.

G Signals: BBN

- Signals are determined by WIMP: e.g., $\tilde{B} \rightarrow \tilde{G} \gamma$,...
- m_{WIMP} , $m_{\tilde{G}}$ determine Decay time: τ_{χ} Energy release: $\zeta_{\text{EM}} = \Delta m n_{\tilde{G}} / n_{\gamma}$ $(\Omega_{\tilde{G}} = \Omega_{\text{DM}})$
- Large energy release destroys successes of BBN Cyburt, Ellis, Fields, Olive (2002)
- But G DM is allowed and low ⁷Li may even be superWIMP signal

G Signals: CMB

- Late decays may also distort the CMB spectrum
- For $10^5 \text{ s} < \tau < 10^7 \text{ s}$, get " μ distortions": $\frac{1}{e^{E/(kT)-\mu}-1}$
 - μ =0: Planckian spectrum μ ≠0: Bose-Einstein spectrum
- Current bound: |μ| < 9 x 10⁻⁵
 Future (DIMES): |μ| ~ 2 x 10⁻⁶

G Signals: Diffuse Photon Flux

- For small ∆m, decays may be very late
- Photons produced at later times have smaller initial

 $E_{\gamma} \sim \Delta m$

but also redshift less; in the end, they are harder

 SuperWIMPs may produce excesses in keV-MeV photon spectrum (INTEGRAL)

Feng, Rajaraman, Takayama (2003)

Summary and Outlook

- New dark matter possibilities (all satisfying the selection rule):
 - Bino-Higgsino dark matter
 - Kaluza-Klein dark matter
 - superWIMP dark matter

 New theoretical possibilities → new signals for dark matter in space

