SUSY AND COSMOLOGY

Jonathan Feng UC Irvine

SLAC Summer Institute 5-6 August 2003

Target Audience

From the organizers:

" graduate students, junior postdocs… "
" ¾ experimentalists, ¼ theorists… "

" Students enjoy the lively discussion sections." (What about the lecturers? Ominous!)

Why Cosmology?

- "The standard model successfully explains all observed phenomena of fundamental particles to date."
- No! The standard model is a great triumph, but it also fails at the most basic level.

 At present, cosmology and astroparticle physics provide the best evidence for new particle physics.

Why SUSY? Cosmology and the Weak Scale

- Universe cools, leaves a residue of dark matter with $\Omega_{\rm DM} \sim 0.1 \ (\sigma_{\rm Weak}/\sigma)$
- 13 Gyr later, Martha Stewart sells ImClone stock – the next day, stock plummets

Coincidence? Maybe, but worth investigating!

SUSY and Cosmology

The Plan

LECTURE 1

SUSY Essentials

Neutralino Cosmology Relic Density Detection

LECTURE 2

Gravitino Cosmology Relic Density Detection

Particle/Cosmo Synergy

SUSY Essentials

- Supersymmetry: a new spacetime symmetry $\{P_{\mu}, L_{i}, K_{i}\} \rightarrow \{P_{\mu}, L_{i}, K_{i}, Q_{\alpha}\}$
- Q_{α} : bosons \leftrightarrow fermions. Each known particle requires a (new) superpartner.
- What does this have to do with the weak scale? The gauge hierarchy problem: Why is $m_h \sim 100$ GeV << $M_{\rm Pl} \sim 10^{19}$ GeV?

SUSY and the Gauge Hierarchy

 \tilde{e}_L , \tilde{e}_R soften divergence, remove unnaturalness Requirements: $\lambda_{\tilde{e}} = \lambda_e$, $m_{\tilde{e}} \sim m_h$

Neutral SUSY Spectrum

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Ĝ				
		$[\chi = \chi_1, \chi_2, \chi_3, \chi_3]$			(4 <i>}</i> ∣	gravitino
1	В	W ^o	1			
1/2					ν	
	Bino					
0			H _u	H _d	ĩ	
					sneutrino	

R-parity and Stable LSPs

• One slight problem: proton decay

- Forbid this with R-parity conservation: $R_p = (-1)^{3(B-L)+2S}$
 - SM particles have $R_p = 1$, SUSY particles have $R_p = -1$
 - Require $\Pi R_p = 1$ at all vertices
- Consequence: the lightest SUSY particle (LSP) is stable!

Models

- We expect the weakscale theory to be derived from a highenergy fundamental theory by RGEs.
- Gauge couplings increase masses;
 Yukawa couplings decrease masses

End result: "typical" LSPs: χ , $\tilde{\tau}_R$

SUSY and Cosmology

Minimal Supergravity

 The canonical SUSY model is mSUGRA, specified by only 5 parameters (actually 6 – see Lecture 2):

{ m_0 , $M_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}(\mu)$ }

- It exhibits virtually all dark matter possibilities (if one looks hard enough!)
- LSP is "usually" χ

SUSY Essentials: Summary

- SUSY predicts many new particles at the weak scale
- Proton decay \rightarrow LSP is stable
- Dark matter candidates: gravitino, sneutrino, neutralino
- High energy models \rightarrow neutralino

Neutralino Cosmology Thermal Relic Density

- The Boltzmann $\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{\rm eq}^2 \right]$ equation: Dilution from $\chi \chi \rightarrow f \overline{f} \qquad f \overline{f} \rightarrow \chi \chi$ expansion • Change variables: $t \to x \equiv \frac{m}{T}$ $n \to Y \equiv \frac{n}{s}$ $\frac{x}{Y_{\rm eq}}\frac{dY}{dx} = -\frac{n_{\rm eq}\langle\sigma v\rangle}{H} \left|\frac{Y^2}{Y_{\rm eq}^2} - 1\right|$ New Boltzmann equation:
- $Y \approx Y_{eq}$ until interaction rate drops below expansion rate

SUSY and Cosmology

Freeze Out

$$\begin{array}{c} n_{\rm eq} \langle \sigma v \rangle \sim H \\ \uparrow & \uparrow \\ (mT)^{3/2} e^{-m/T} & T^2/M_{\rm Pl} \end{array}$$

$$\frac{m}{T} \sim \ln\left[\langle \sigma v \rangle m M_{\rm Pl} \left(\frac{m}{T}\right)^{1/2}\right] \to 25$$

A little more work (see Kolb and Turner) shows:

$$\Omega h^2 = ms Y_{\infty} \sim \frac{10^{-10} \text{ GeV}^{-2}}{\langle \sigma v \rangle}$$

But
$$\langle \sigma v \rangle \sim \frac{\alpha^2}{m_W^2} 0.1 \sim 10^{-9} \text{ GeV}$$

We naturally find $\Omega h^2 \sim 0.1$!

$\chi\chi$ Annihilation

 In more detail: Pandora's box! Neutralino annihilation is sensitive to many processes. Two classes:

- Fermion diagrams
 χ are Majorana fermions:
 Pauli → S = 0
 - $L \operatorname{cons} \rightarrow P$ wave suppression

Goldberg (1983) Ellis, Hagelin, Nanopoulos, Srednicki (1983)

• Gauge boson diagrams vanish for χ = pure Bino.

Bulk Region

Where can we get the correct Ωh²? Various regions.
 In the "bulk region," χ ≈ pure Bino.

 $Ω_{DM} < 0.3 →$ lower bound on $\langle \sigma v \rangle$ → sfermion mass < 200 GeV → χ mass < 200 GeV!

→ Cosmology (seemingly) guarantees light SUSY !

Focus Point Region

 Unfortunately, this assumes χ ≈ pure Bino. This is not necessarily true, even in simple models like mSUGRA.

• Nevertheless, Ωh^2 very constraining! (Often too much χ DM.)

Co-annihilation Region

• If other superpartners are nearly degenerate with the χ LSP, they can help it annihilate

- Requires (very roughly) $\Delta m < T \sim m_{\chi}/25$
- In co-annihilation region, m_χ < 500 GeV

Neutralino Cosmology Dark Matter Detection

 Direct detection depends on χN scattering

• Indirect detection depends on $\chi\chi$ annihilation

 $\chi \chi \rightarrow \gamma$ in galactic center $\chi \chi \rightarrow e^+$ in halo

or both

 $\chi\chi \rightarrow v$ in centers of the Sun and Earth

χ Dark Matter: Direct Detection

- Spin-independent scattering most promising for SUSY
- Theorists: χq scattering
- Expts: χ nucleus scattering
- Meet in middle:
 χp scattering

Stage 1: CDMS, EDELWEISS, ZEPLIN1, DAMA Stage 2: CDMS2, EDELWEISS2, ZEPLIN2, CRESST2 Stage 3: GENIUS, ZEPLIN4, CRYOARRAY

SUSY and Cosmology

Indirect Detection Experiments

TABLE I. Current and planned neutrino experiments. We list also each experiment's (expected) start date, physical dimensions (or approximate effective area), muon threshold energy $E_{\mu}^{\rm thr}$ in GeV, and 90% CL flux limits for the Earth Φ_{μ}^{\oplus} and Sun Φ_{μ}^{\odot} in km⁻² yr⁻¹ for half-cone angle $\theta \approx 15^{\circ}$ when available.

Experiment	Type	Date Dim	ensions E_{μ}^{thr}	Φ^\oplus_μ	Φ^{\odot}_{μ}					
Baksan [65] Kamiokande [6 MACRO [67] Super-Kamioka Baikal NT-96 [6 AMANDA B-10	TABLE II. Some of the current and planned γ ray detector experiments with sensitivity to photon energies 10 GeV $\lesssim E_{\gamma} \lesssim 300$ GeV. We list each experiment's (proposed) start date and expected E_{γ} coverage in GeV. The energy ranges are approximate. For experiments constructed in stages, the listed threshold energies will not be realized initially. See the references for details.									
Baikal NT-200	Baikal NT-200 Experiment		Туре		Date		E_{γ} Range			
AMANDA II [7 NESTOR [§] [72] ANTARES [73] IceCube [71]	EGRET [88] STACEE [89] CELESTE [90] ARGO-YBJ [91]	2 1 1 1	Satellite ACT array ACT array Air shower		1991-2000 1998 1998 2001		0.02-30 20-300 20-300 100-2,000			
* 2 GeV for Si	MAGIC [92] AGILE [93] HESS [94] AMS/γ [95] CANGARO	ACT200110-1000TABLE III. Recent and planned e^+ detector experiments. We list each experiment's (expected)start date, duration, geometrical acceptance in cm ² sr, maximal E_{e^+} sensitivity in GeV, and(expected) total number of e^+ detected per GeV at $E_{e^+} = 50$ and 100 GeV.								
	VERITAS [GLAST [98	Experiment HEAT94/95 [114] CAPRICE94/98 [11 PAMELA [116] AMS-02 [117]	Type Balloon 5] Balloon Satellite Space station	Date 1994/95 1994/98 2002-5 2003-6	Duration 29/26 hr 18/21 hr 3 yr 3 yr	Acceptance 495 163 20 6500	$\begin{array}{c} E_{e^+}^{\rm max} \\ 50 \\ 10/30 \\ 200 \\ 1000 \end{array}$	$\frac{dN}{dE}(50)$ — — 7 2300	$\frac{\frac{dN}{dE}(100)}{-}$ 0.7 250	
SUSY and Cosmology SSI03 Lecture 1							F	ena 2		

Dark Matter Detection

Discovery prospects before LHC

> Particle probes Direct DM detection Indirect DM detection

Correct relic density → detection promising! (Both require large χmatter couplings)

Detection methods complementary

SUSY and Cosmology

Neutralino Cosmology: Summary

- Neutralinos: excellent dark matter candidates
- Cosmology provides no useful upper bounds on SUSY masses, but $\Omega_{\rm DM}$ is highly constraining
- Detection not yet constraining, but prospects promising
- Particle/cosmo searches complementary (see Lecture 2)